o U1 AN WN -

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

37

38

39

40

41

42

43

08-12-22 - Socratica - Sets in Python
https.//youtu.be/sBvaPopWOmQ

Sets are useful when you are working with data and the order of the elements is irrelevant.

use .add to add elements to a set.

Duplicates will not be stored in a set. If you try to store a duplicate, it will ignore it the second
time.

examples = set()
examples.add(42)
examples.add(False)
examples.add(3.14159)
examples.add('Thorium’)

print(examples)

Notice that you can add data of different types to the same set.
Sets are different from lists and tuples in that the order does not matter in a set, and no
duplicates allowed.

Use the length function to find the length of a set:
print(len(examples))

Use remove function to remove False from the set.
examples.remove(False)
print(examples)

If you try to remove something not in the list, you get a key error.

The discard method is a way around this error, and Python says nothing, no alert it is not
there.

examples.discard(False)

To prepopulate a set, do the following, but usually curly braces are used instead of this
parentheses and bracket combo:

examples_02 = ([28, True, 'Helium', 'lovely', 55.343])
print(len(examples_02))

As explained at: https;//www.edlitera.com/blog/posts/python-parentheses#
mcetoc_1fvgio1mo1d

Sets are collections of mutable, unique, hashable values. When working with sets, you can
freat them as

dictionaries that contain only keys and no values. They are not used as often as dictionaries
and are

usually used as an easy way to remove duplicates from a collection. A set is created by
entering values

instead of pairs inside curly braces.

NOTE: Curly braces go along with dictionaries, so using them in sets can be confusing.

However, creating empty sets is not done by using curly braces. If you try to just leave
nothing between

the curly braces, Python will automatically create a dictionary. Therefore, to create an empty
set you

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

must invoke set().

If we use the clear method, it will remove all elements from the set.
examples_02.clear() # This removes everything from the set.

EVALUATING THE UNION and INTERSECTION of two sets
Union = the combination of ALL elements from the two sets, denoted by U.
Intersection = the elements that are present in both sets, denoted by an upside-down U.

odds = set([1, 3, 5, 7, 9])

evens = set([2, 4, 6, 8, 10))
primes = set([2, 3, 5, 7])
composites = set([4, ¢, 8, 9, 10])

print("odds.union(evens) =", odds.union(evens))
print("odds.intersection(primes) =", odds.intersection(primes))
print("evens.intersection(odds) = ", odds.intersection(evens))

You can also use sets and ask questions like "2 in primes", and you will get True or False
By typing "dir('name of set') you can get a list of all the different methods you can call
#on the class Set.

0 N o L AW

N N N 2 a4 a4 a a4 a4
N = O Vv 0 N o T A W N 2 O v

23
24
25
26
27
28
29

30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

#08-12-22
Lists - Socratica - https;//www.socratica.com/lesson/lists

Lists make it easy to work with ordered data, elements that belong in a specific sequence
Two ways to create a list: use the list constructor examples = list() or just brackets
examples = []

A list can be created and populated simultaneously
primes = [2,3, 5,7, 11, 13]

primes.append(17)

primes.append(19)

print("This is the primes list: ", primes)
This prints: This is the primes list: [2, 3,5, 7, 11, 13, 17, 19]
The elements are kept in order.

You can view single or multiple elements of a list (if you do not wish to view all) by indexing
into the list using an elements index number, the count of which begins with [o0]

primes[4]

print("This is element 4 of the list, which appears 5th: ", primes[4])

This prints: This is element 4 of the list, which appears 5th: 11

Indexing will wrap back around when you use negative numbers, thereby making the last
number in a list

both its index number and its negative index number which will always be [-1].

Going beyond the scope of your list, positive or negative, will give you an index error.

SLICING: retrieve a range of values from your list

primes|[2:5]

print("This is primes[2:5]:", primes[2:5])

Slicing includes the value at the starting index but excludes the stopping index, so you have
fo add 1

to get all the way to the end with slicing.

Lists can contain much more than one type: integers, booleans, strings, floats, and even
other lists
examples = [128, True, 'love’, 1.732, [¢4, False], "and so on"]

Lists can also contain duplicate values

dicerolls = [4,7,2,7,12, 4, 7]

print("This is your dice roll list complete with the duplicate rolls: ", dice_rolls)

This will print out: This is your dice roll list complete with the duplicate rolls: [4, 7, 2, 7, 12, 4, 7]

COMBINING LISTS, called concatenation, and leaves the original lists unchanged:

numbers = [1, 2, 3]

letters = ['a", 'b", 'c]

print("l shall now combine your lists: ", numbers + letters)

This will print: | shall now combine your lists: [1,2,3,'a, b’ ¢’

To find out all of the functions you can use with lists, pass a list to the dir() function:

dir(numbers) prints out a long list of functions as shown below. Typing help(numbers.reverse)
will explain to you how to use the function, as it will for all the following functions:

[_add |

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

o OH W I OH W OH W OFH OH W I OH O OH WO OH W I OH W OH W OH OH W OH OH W OFH W OH KW I OH W OH W OH KW W™ R

class

class_getitem_,
contains_|

" delattr_
"_delitem |,

L dir_"

" doc_

'

eq)
" format_’

' '

ge,
'_getattribute_,
'_getitem_,

'
1
1
'

init. subclass_
iter.

—

’

'

o)

\

en_

—
~

—
'

mul_,
ne_'
new._"
reduce_,
reduce_ex_’
repr_,
reversed._,
mul_"

setattr_,
setitem_"
sizeof_!

str_

' subclasshook_!
append,,

‘clear’

copy’,

‘count’,

‘extend,

index’,

insert’,

pop’,

remove’
reverse’,

sort']

—

0 N oy L AW N

G U A A DN DD ADMDDAEDIDMDWWWWWWWWWWWRNRNRNNNRNDNDIRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-16-22 - PyDoc - Socratica - https://youtu.be/URBSvqiboxw

Documentation is how engieers desscribe their code in prose.

PyDoc module is the tool with which you can share your documentation with other

engineers.
Metadocumentation = the documentation about the documentation

To look at the documentation on any given object:
In the terminal window, type: python -m pydoc name_of module
It will tell you how to use every single function in the module.

You can also use the same method to look up the help info for a class, etc.
EX: python -m pydoc tuple

PRINTS:

class tuple(object)

| tuple(iterable=(), /)

| Built-in immutable sequence.

Pydoc is identical to the help function except you do not have to import
a module in order to look at the documentation for things contained in it.

You can use Pydoc to search all modules for a certain keyword:
python -m pydoc -k ftp -k tells it you are going to give it a keyword.

PRINTS: (Every module that has anything to do with ftp, including 3rd party)
#

ftplib - An FTP client class and some helper functions.

numpy.ffttests.test helper - Test functions for fftpack.helper module

pygame 2.1.2 (SDL 2.0.18, Python 3.10.4)

Hello from the pygame community. https.//www.pygame.org/contribute.html
scipy.fftpack - =================================c=========cc=======oooo=
scipy.fftpack.basic - Discrete Fourier Transforms - basic.py

scipy.fftpack.convolve

scipy.fitpack.helper

scipy.fftpack pseudo_diffs - Differential and pseudo-differential operators.

scipy.fftpack.realtransforms - Real spectrum transforms (DCT, DST, MDCT)
scipy.fitpack.setup

scipy.fftpack.tests

scipy.fftpack.tests.gen_fftw ref

scipy.fitpack.tests.gendata

scipy.fftpack.tests.test basic

scipy.fftpack.tests.test_ helper

scipy.fftpack.tests.test import - Test possibility of patching fftpack with pyfftw.
scipy.fftpack.tests.test pseudo_diffs

scipy.fftpack.tests.test_real transforms

When we search pydoc for info on pydoc:

pydoc - the Python documentation tool
pydoc <name> ...

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Show text documentation on something. <name> may be the name of a
Python keyword, topic, function, module, or package, or a dotted
reference to a class or function within a module or module in a
package. If <name> contains a /', it is used as the path to a

Python source file to document. If name is 'keywords', ‘topics,

or ‘'modules’, a listing of these things is displayed.

pydoc -k <keyword>
Search for a keyword in the synopsis lines of all available modules.

pydoc -n <hostname>
Start an HTTP server with the given hostname (default: localhost).

Start an HTTP server on the given port on the local machine. Port
number 0 can be used to get an arbitrary unused port.

pydoc -b
Start an HTTP server on an arbitrary unused port and open a web browser
to interactively browse documentation. This option can be used in
combination with -n and/or -p.

#

#

#

#

#

#

#

#

#

#

#

#

#

pydoc -p <port>
#

#

#

#

#

#

#

#

pydoc -w <name> ...

Wirite out the HTML documentation for a module to a file in the current
directory. If <name> contains a /', it is treated as a filename; if

it names a directory, documentation is written for all the contents.

Calling pydoc with the -b option will find an available port and open the
documentation in the browswer for you.

python -m pydoc -b
Here you can peruse TONS of modules and all sorts of documentation.

0 N o L AW

A DA DM DM DM DA DA DDA DA W WWWWWWWWWRNRNNDNDDNDDNDNNDNDNRNNDNNDND-2 A& A4 A A A a4 A
O 00O N 0N U1 A WN 2 O V0 O NOoN U A WD 2O V0V 0NN A WN O V0 00NN AN 2 O

v
- O

08-13-22 - TUPLES - SOCRATICA - https://youtu.be/NI26dqhs2Rk

Tuples = the smaller, faster alternative to lists
The difference between lists and tuples:

A LIST contains a sequence of data, surrounded by square brackets
LIST example:
prime_numbers = [2, 3, 5, 7, 11, 13, 17]

A TUPLE contains a sequence of data surrounded by parentheses
TUPLE example:
perfect_squares = (1, 4, 9, 16, 25, 36)

Both can use the len function to display the number of elements:
print("# Primes: ", len(prime_numbers))
print("# Squares =", len(perfect_squares))

Both can be iterated over:

for prime in prime_numbers:
print('Prime: ", prime)

for square in perfect_squares:
print("Square: ", square)

DIFFERENCES:

To see the difference, we will print the methods available for the class LIST
print(List Methods")
print(dir(prime_numbers))
print(go * ')

print(Tuple Methods")
print(dir(perfect_squares))

We get:
List Methods
#[_add_ ' ' class_' ' class getitem '

pap—

contains_, '_delattr_" "_delitem_" " dir_"

#' doc_' ' eq ' ' format_| ' _ge_ ' getattribute_’ '_getitem | ' gt ' ' hash_]

' jadd_, _imul_, _init_ "_init. subclass_’, "iter_ _le_, "len_ "It |

#' mul_’"_ne_, " _new_’ ' _reduce_ ' _reduceex_ " _repr_ _reversed_ ' _rmul_’
' _setattr ' '_setitem_" '_sizeof_' '_str_' '_subclasshook_' ‘append’ ‘clear, ‘copy,

‘count, 'extend,, 'index’ 'insert, 'pop’, 'remove’ reverse’ 'sort’]

Tuple Methods

#[_add_' ' class_ | '_class getitem_, '_contains_' '_delattr_, ' _dir_’ ' _doc_'

#' eq ' _format_' ' _ge ' ' getattribute_, ' _getitem_' '_getnewargs_' gt ' ' _hash_’
' init_" "initsubclass_’ "_iter " le_ " Jen_| "It " mul_'"_ne_, ' new._,
' reduce_’ _reduce.ex_, _repr_, ' _rmul_’, "_setattr_, ' sizeof " str_,

' _subclasshook_', ‘count, index/

Lists have more functions available to them, but they occupy more memory also.

By importing sys and using the getsizeof function in sys, you can see how many bytes
something uses

import sys

52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

listex = [1, 2, 3,'a",'b", 'c’, True, 3.14159]

tuple_ex = (1,2, 3,'a", 'b", 'c’, True, 3.14159)
print("Size of list: ", sys.getsizeof(list.ex)) # 120
print("Size of tuple: ", sys.getsizeof(tuple_ex)) # 104

MORE DIFFERENCES

Lists - you can add, remove, and change data

Tuples - cannot be changed, immutable, allowing Python to optimize

timeit module has function also called timeit. The first argument is a statement containing a
command

we would like to execute.

Below, | have created a list of 5 integers and am going to run 1 million times.

import timeit

list_test = timeit.timeit(stmt="[1, 2, 3, 4, 5]", number=1000000)
tuple_test = timeit.timeit(stmt="(1, 2, 3, 4, 5)", number=1000000)

print("Time of list: ", list_test) # Time of list: 0.05036733404267579
print("Time of tuple :", tuple_test) # Time of tuple : 0.010904083028435707

WORKING WITH TUPLES:

Tuples use parentheses, and you can make an empty one with empty parentheses.
empty_tuple = ()

test1 = ("a’)

test2 = ("a', 'b")

test3 = (", 'b", 'c')

print(empty_tuple) # ()

print(test1) #a <-test1 came back a string. Put a comma at the end to make a tuple
with 1 element

print(test2) #(a,'b)

print(test3) #(a, b, 'c)

empty_tuple = ()

test1 = (a')

test2 = ("a', 'b")

test3 = (a', 'b", 'c’)

print(empty_tuple) # ()

print(test1) #(a)) <-Nowitis a tuple
print(test2) #(a,'b)

print(test3) #(a, b, 'c)

Alternative Construction of Tuples:
You can leave out parentheses all together

test4 = 1,

tests = 1,2

testé = 1,2, 3

print(test4) # (1)
print(tests) #(1,2)
print(tests) #(1,2 3)

print(type (test4)) # <class 'tuple'’>
print(type(tests)) # <class 'tuple’>

102 print(type(tests)) # <class 'tuple’>

103

104

105 # Tuples with one element:

106 # The reason for the above situation of the tuple with one element is because of "tuple
assignment”.

107 # Imagine working with a data set of people that contains 3 things about each:

108 # their age, country, and whether or not they know Python, taken from a survey and stored in
a tuple.

109

110 # age, country, knows_python

111 survey = (27, "Vietnam", True)

112

113 # These can be accessed the same way list elements can:

114 age = survey|o]

115 country = survey[1]

116 knows_python = survey[2]

117

118 # Printing values to make sure this method is successful

119 print(Age: ', age)

120 print('Country: ", country)

121 print('Knows Python? ', knows_python)

122

123 # Prints:

124 #Age: 27

125 # Country: Vietnam

126 # Knows Python? True

127

128 # Now, add a second person to the survey:

129 survey2 = (21, 'Switzerland', False)

130

131 # TUPLE ASSIGNMENT: You can assign all elements to different variables in a tuple in a single
line.

132 # Python unpacks all the variables and assigns them for you.

133 age, country, knows_python = survey2

134

135 print('Age: ", age)

136 print('Country:", country)

137 print('Knows Python? ', knows_python)

138

139 # Tuple Assignment explains the need for the trailing comma when creating a tuple with just
one element.

140 # According to the rules of tuple assignment, without the comma, Python will unpack and
assign the variables

141 # rather than create a new, single-element tuple.

142

143 country = ("Australia") # <- Unpacks and assigns Australia as the country for a survey
person

144 print(country)

145

146 # VS

147

148

149
150
151

152
153
154
155

country = ("Australia",) # <- Creates the tuple country with the single element Australia and
tells
print(country) # Python not to unpack it as a variable.

Make sure the number of variables matches the number of elements in the tuple, or you get
a ValuekError.

a,b,c=(1,23,4) #<-Not enough variables to hold all of the values of the tuple.
Xy, z=(1,2) # ValueError: too many values to unpack (expected 3)

N oy AN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50

08-15-22 - SORTING in PYTHON - SOCRATICA - https;//youtu.be/QtwhIHP_tgc

SORTING ALPHABETICALLY:
Alkaline Earth metals, currently sorted by atomic number:
earth_metals = ['Beryllium', 'Magnesium', 'Calcium’, 'Strontium’', 'Barium’, 'Radium’|

By default, the sort method assumes you want the information sorted alphabetically
ascending.

So to sort this list alphabetically, we only need:

earth_metals.sort()

And then print them.

print("Earth metals sorted alphabetically, ascending: ", earth_metals)

OR

print(sorted(earth_metals))

Trying print(earth_metals.sort()) prints None, because it changed the original list rather than
returning anything.

Prints:
Earth metals sorted alphabetically, ascending: [Barium’, ‘Beryllium),
Calcium’, 'Magnesium'’, ‘Radium’, ‘Strontium’]

[Barium’, ‘Beryllium,, 'Calcium’, 'Magnesium ‘Radium’, ‘Strontium’]

To put them in reverse order alphabetically:
earth_metals.sort(reverse = True)
print(earth_metals) # Frints: [Strontium’, ‘Radium’, ‘Magnesium' ‘Calcium’, 'Beryllium' Barium'|

Now with a tuple, rather than a list:

earth_metals_tuple = (‘Beryllium', 'Magnesium’, ‘Calcium’, 'Strontium’, 'Barium’, 'Radium’)
earth_metals_tuple.sort()

print(earth_metals_tuple)

Prints an error: AttributeError: tuple’ object has no attribute ‘sort’

Tuples are immutable objects, and they cannot be changed. Sorting changes things.
Sorting actually changes the object itself rather than making another that is sorted.

help(list.sort)

Help on method_descriptor:

sort(self. /, * key=None, reverse=False) <- By default, reverse is set to False

Sort the list in ascending order and return None. <- So it will sort ascending.

The sort is in-place (ie. the list itself is modified) and stable (ie. the

order of two equal elements is maintained). <- In-place means Python does not create a
2nd list.

If a key function is given, apply it once to each list item and sort them,

ascending or descending, according to their function values.

The reverse flag can be set to sort in descending order.

The key argument (first) for sort is a sorting function, which will be used to determine
what values to sort by.

The following list is the planets in the solar system, their radius, density, and average
distance from the Sun in astronomical units, 1 = avg distance of Earth from Sun.

planets = [('Mercury', 2440, 5.43, 0.395),
('Venus', 6052, 5.24, 0.723),

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

(‘Earth', 6378, 5.52, 1.000),
('Mars', 3396, 3.93, 1.530),
(Jupiter', 71492, 1.33, 5.210),
('Saturn’, 60268, 0.69, 9.551),
('Uranus', 25559, 1.27, 19.213),
(‘Neptune' 24764, 1.64, 30.070)]

Currently, the planets are sorted by their distance from the sun.

We want to sort by their size / radii highest to lowest instead.

We need to create a function to sort by, in this case, one that returns the second
value in the tuple:

size = lambda planet: planet[1] # <- This will choose the second element in the tuple, index|1]
planets.sort(key=size, reverse = True) # <- passing in the function to sort by and reverse
to sort planets from largest to smallest.

print(planets)

Prints: [(Jupiter, 71492, 1.33, 5.21), (‘Saturn’, 60268, 0.69, 9.551),
(Uranus, 25559, 1.27, 19.213), (Neptune', 24764, 1.64, 30.07),
(Earth’ 6378 5.52, 1.0), (Venus' 6052, 5.24, 0.723),

(Mars' 3396, 3.93, 1.53), (Mercury’, 2440, 5.43, 0.395)]

Now to sort by density:
density = lambda planet: planet|[2]
planets.sort(key=density) # <- Going to print by default (ascending), not reverse

print(planets)

Prints: [('Satum’, 60268, 0.69, 9.551), (Uranus’, 25559, 1.27, 19.213),
(Jupiter, 71492, 1.33, 5.21), (Neptune', 24764, 1.64, 30.07),

(‘Mars', 3396, 3.93, 1.53), (‘Venus', 6052, 5.24, 0.723),

(‘Mercury’, 2440, 5.43, 0.395), (‘Earth’, 6378, 5.52, 1.0)]

What if you want to create a sorted copy of a list instead? Or sort a tuple?
For this, we can use the SORTED method:

help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /. * key=None, reverse=False)

Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

When calling SORTED, the first argument is a list or any iterable. Then a key
or function to sort by, then a specification for reverse or not.

earth_metals_02 = ['Beryllium', 'Magnesium', 'Calcium’, 'Strontium’, 'Barium’, 'Radium’]
sorted_earth_metals_02 = sorted(earth_metals_02)

print(sorted_earth_metals_02)
print(earth_metals_02)
Prints: [Barium', ‘Beryllium', ‘Calcium, ‘Magnesium’, 'Radium’, ‘Strontium']

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Printed the metals in alphabetical order.
But left the original list in its original atomic order:
[Beryllium’, 'Magnesium’, ‘Calcium’, 'Strontium’, 'Barium’, ‘Radium’]

Tuple of first positive integers in random order

data=(7,2,5,6,1,3,9, 10, 4, 8)

Tuples are immutable, so they do not have a sort method, since they cannot be changed.
However, if you pass them to the sorted function:

print(sorted(data))

Prints: [1,2,3,4,5,6,7,8 9, 10]

Input was a tuple, but the output is a list. And the original tuple remains unaltered.

SORTED can also sort strings character by character, capital letters coming first:
print(sorted("Alphabetical™))
Prints: [A' 'a, a, b’ c. e, 'h, "1 "I o, t]

o U1 AN WN -

11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30
31
32

33
34

35
36
37
38
39
40
41
42
43
44
45
46

08-12-22 - Socratica Python Videos - Notes
https://youtu.be/NE97ylAnrz4

import math

Functions enable you to use information a repeatable number of times without repeating
yourself.

Inside the parentheses, you write the inputs for the function, the arguments

Pass tells Python to skip this code and move on.

If you type the function without its parentheses, Python will tell you where in memory the
function is stored

rather than trying to run the function.

def f():
pass

Returns are optional

def ping():
return 'ping!

Write a function that will return the value of the volume of a sphere when given the radius,
based on the equation

for calculating the volume of a sphere: V' = 4/3(pi)(r"3) - Must import math module in order to
use pi

We use floats to get an accurate 4/3.

def volume_sphere(r):
"Returns the volume of a sphere when given its radius™
volume = (4.0/3.0) * math.pi * (**3)
return volume

volume_sphere(4)

print(volume)

Because we give an argument when creating the function, ris a required argument when
calling the function as well.

Write a function that takes two arguments and computes the area of a triangle, a = 1/2(base
x height)

def area_triangle(b, h):
"""Returns the area of a triangle when given the base and height measurements."""
volume =05 *b*h
return volume

area_triangle(3, 6)
print(volume)

KEYWORD ARGUMENTS:
Write a function that converts a person's height from American units to centiments, given that
#1inch = 2.54cm and 1 foot = 12 inches.

47

48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
71
72

The function will take two keyword arguments, feet and inches. We assign each a default
value of o.
This is why Python also refers to keyword arguments as default arguments.

def standard_metric(feet = 0, inches = 0):
""" Converts a person's height from standard American feet and inches to centimeters."""
inches_to_centimeters = inches * 2.54
feet_to_centimeters = feet * 12 * 2.54
conversion = inches_to_centimeters + feet_to_centimeters
return conversion
standard_metric(feet = 5, inches = 7)
print(conversion)

TYPES of ARGUMENTS: Keyword (has = sign and a default value) and Required

When you write a function and use BOTH types of arguments together, the keyword
arguments must come last.

Example:

def g(y, x = 0):
return x+y

You must provide the required argument y, but do not have to provide an x. If you do not
provide an x, the

default value assigned in the definition of the function will be used.

To provide a value for a keyword argument, you must speficy it by its name:

Required arguments are not given a name and are determined by their position.

9(s. x=4)

0 N o L AW

G U A& A DN DD ADAMDDADIDWWWWWWWWWWWRNRNRNNNRNDNRNDRNRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-17-22: Socratica - Iterators - https://youtu.be/WR7mO_jYN9g

Looping, every programmers favorite activity.
Iterables and the itertools module:

In Python, if you can loop over something in a for-loop, it is called an iterable.
lterables include any sequence that is ordered: lists, tuples, strings, and bytes

LIST:
list_thing = ['CX32", "GSOF', 'Emily’, 'Franz', 'Rex’|
for element in list_thing:

print(element)

TUPLE:
for element in (Jose', 'Boh’, 'Rusti’):
print(element)

#STRING:
for letter in 'Socratica”:
print(letter)

BYTES (ASCII codes for each letter):
for byte in b'Binary":
print(byte)

Non-iterables: digits of an integer, and an iterable must be constructed for that.
Instead, you can iterate over the characters in a string version of a number.
The following will convert each number of the integer into a character in a list.
C =299792498
digits = [int(d) for d in str(c)]
Now, we can loop over the digits:
for digit in digits:
print(digit)

What makes an object iterable?

lterables are containers that have two special methods that make them iterable:
#_iter_() and _next_|).

container_iter_() - returns an iterator object

container_next_() - returns the next item from the collection

Repeated calls to _next_() will go through items one item at a time until there

is nothing left to iterate over, at which point a Stoplterator Exception is raised.

We will iterate a for-loop by calling the _iter_() and _next_() methods ourselves:
usernames = (‘Rainer’, 'Alfons', 'Flatsheep’)

looper1 = usernames._iter_ # <- This creates our iterator

print(type(loopert)) # PRINTS: <class ‘tuple iterator>

print(loopert._next_()) # PRINTS: Rainer
print(loopert._next_()) # PRINTS: Alfons
print(loopert._next_()) # PRINTS: Flatsheep

Another call would give us an error due to the Stoplteration

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

You can also use the iter and next functions without the underscores:

looper2 = iter(usemnames) # < This creates our iterator
print(next(looper2)) # PRINTS: Rainer
print(next(looper2)) # PRINTS: Alfons
print(next(looper2)) # PRINTS: Flatsheep

Again, another call gives us the Stoplteration message.
Now for a for-loop using these functions:
users = ['laust’, 'LeoMoon’', 'JennaSys', 'dgletts’]
As a conventional for-loop
for user in users:
print(user)

As a long-winded, typed-out for-loop
looper3 = iter(users) # <- This creates our iterator
while True: # <- Creates an infinite loop, only stopping
try: # when exception happens.
user = next(looper3)
print(user)
except Stoplteration:
break
The 7 lines above explain the mechanics of iterations with iterables.

Now, we will create a class with iteration built in (a stock portfolio):

class Portfolio: # <- constructor creates a dictionary to hold
def _init_(self): # number of shares in each asset.
selfholdings = {} # <- Key = ticker, value = number of shares.

buy method will increase the holdings in ticker by the specified
number of shares.
def buy(self, ticker, shares):

If this is the first time purchasing this asset, we will use a

default value of zero shares.

self.holdingslticker] = self.holdings.get(ticker, 0) + shares

Next, we make a sell method for selling shares.
Buy and sell could be done in one method, postive integer for buy
and negative integer for sell.
def sell(self, ticker, shares):
self.holdings|ticker] = self.holdings.get(ticker, 0) - shares

Now, we want to be able to iterate over the holdings in a portfolio
def _iter_(self):

Here, we only need to supply an iterator, and since our holdings

are in a dictionary, they are already iterable, so all we need

#to do is return the iteration of that iterable.

return iter(self.holdings.items())

The items() method returns a view object. The view object contains

the key-value pairs of the dictionary, as tuples in a list.

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

Now we can create a portfolio and invest in some imaginary companies:
p = Portfolio() # <- instantiates a Portfolio object named 'p'
p.buy('ALPHA, 15)

p.buy('BETA", 9)

p.buy('GAMMA, 23)

p.buy('GAMMA!, 20)

Loop over portfolio and display holdings:
for ticker, shares in p:
print(ticker, shares)

PRINTS:
#ALPHA 15
#BETA 9

GAMMA 43

ITERTOOLS MODULE: has three categories of functions

Infinite iterators = if you do a for-loop using one of these, it will go on
forever until you have stopped the loop.

A group of functions for common pre-processing on the collection of things
over which you are looping

Combinatoric functions = make it easy to do calculations involving permutations
and combinations from a set.

To illustrate itertools, we will construct a list of all possible hands in poker
import itertools

possible number ranks in cards (2-10) along with jacks, queens, kings, and aces
ranks = list(range(2, 11)) + [, 'K', 'Q’, 'A’]

This would give us a list composed of integers and strings

So we will make all of them strings:

ranks = [str(rank) for rank in ranks]

print(ranks)

suits = ['Hearts', 'Clubs', 'Diamonds’, 'Spades']

List comprehension to combine ranks and suits:
deck = [card for card in itertools.product(ranks, suits)]

for index, card in enumerate(deck):
print(1+index, card)

Create a list of all the possible combinations of cards
hands = [hand for hand in itertools.combinations(deck, 5)]

print(f"The number of hands possible in poker is {len(hands)}")

0 N oy L AW N

G U A A DN DD ADMDDAEDIDMDWWWWWWWWWWWRNRNRNNNRNDNDIRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-17-22 - EXCEPTIONS in PYTHON - SOCRATICA - https://youtu.be/nICKrK GHSSk

When Python encounters an error while running your code, it stops execution
and raises an exception.

An EXCEPTION is an object with a description of what went wrong and a

TRACEBACK to where the problem occurred.

There are TONS of different types of exceptions, but we will talk about

the most common ones:

Purposefully problematic code: SYNTAX ERRORS:

for i in range(s) <- Will raise a Syntax Error, without :
print('Hello, World!")

Python will point exactly to where the syntax error occurred

Other common exceptions:

ZeroDivision - don't even try dividing by zero

FileNotFound - if you refer to a file that the code cannot find

TypeError - for using a type incorrectly

ValueError - usually when dealing with mathematical operations.

Use cmath module for complex numbers.

There are many classes and subclasses of errors and exceptions
Ex: LookupError has IndexError and KeyError as child errors

The main way of dealing with errors is the TRY, EXCEPT, ELSE, FINALLY

construction.

You can have more than one exception clause, if necessary. So you can respond
to different exceptions in different ways.

In the TRY block, Python attempts to execute your code. If a problem occurs,

it jJumps to the first matching exception block.

If no problem occurs, then after try, it skips all the excepts and goes

to the else block.

The FINALLY block will always execute.

Write a function that reads the code of a binary file and returns the data.
We will also measure the time required to do so.

import logging

import time

Create a basic logger with debug level:
logging.basicConfig(flename="problems.log’, level=logging. DEBUG)

logger = logging.getLogger()

def read_file_timed(path):
"""Return the contents of path and find out the time to do so."""
start_time = time.time()
try:
f = open(path, mode="rb")

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

data = fread()
return data
If the above is unable to execute, we will throw a customized error.
except FileNotFoundError as err:
logger.error(err)
raise will pass along the file not found error to user
raise
else:
f.close()
finally:
stop_time = time.time()
dt = stop_time - start_time

logger.info("Time required for {file} = {time}" format(file=path, time=dt))

0 N o L AW

G U A& A DN DD ADAMDDADIDWWWWWWWWWWWRNRNRNNNRNDNRNDRNRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-22-22 - GENERATORS - SOCRATICA - https;//youtu.be/gMompY5MyPg

Good for looping over large data that would otherwise crash your computer
Good for going through seemingly infinite amounts of data

A generator is a function that acts as an iterator. It generates the elements you

loop over. It is like an on-demand iterable object.

Typical iterators loop over data stored in memory, but generators save on memotry.
Generators use YIELD instead of return - temporarily passing control over to the

code that is looping over the generator object's values until the generator runs

out of yields.

def go:
yield 1
yield 2
yield 3
print(g()
PRINTS: <generator object g at ox7faf181b7d10>
It returns a generator object *"" rather than a number, and we can loop over it.

for x in g():
print(x)

PRINTS:

#1

#2

#3

Now for a function that yields each of the 26 characters of the English alphabet:
String module gives access to commonly used sets of characters as strings
import string

def letters():
for letter in string.ascii_lowercase:
yield letter

for letter in letters():
print(letter)
PRINTS: the lower case alphabet one letter per line

Generator function that yields all the prime numbers:

import itertools # <- going to use the count(start, increment) function
def prime_numbers():

first prime is 2, all others negative. Handle 2 first:

yield 2

prime_cache = [2] # Cache of our prime numbers

Loop over all positive odd integers starting with 3
for n in itertools.count(3, 2):

is_prime = True # Assuming n is prime

Check if n is divisible by any of the prime numbers in our cache

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

for p in prime_cache:
if n % p==0: #Thus it is not prime if so divisible
is_prime = False

break
Is it really prime?
if is_prime:
prime_cache.append(n) # Add n to our cache
yield n # yield n back as prime number
for p in prime_numbers(): # We can now loop over and print our primes.
print(p) # Once p is over 100, we will stop looping
if p > 100: # with this break statement, otherwise it
break # will continue infinitely.

MORE COMPACT WAY TO MAKE GENERATOR: with a generator expression
(similar to list comprehensions, but use parentheses instead of [])

squares = (z ** 2 for z in itertools.count(1))

for number in squares:
print(number)

if number > 500:
squares.close() # Close method stops generator from generating more squares.

print(type(squares))
import sys
print(sys.getsizeof(squares))

PRINTS:

<class ‘generator’>

104 (bytes)

If we used a list comprehension, it would use an infinite number of bytes

0 N o L AW

G U A& A DN DD ADAMDDADIDWWWWWWWWWWWRNRNRNNNRNDNRNDRNRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-13-22 LISTS - Socratica - https.//www.youtube.com/watch?v=XCcpzWs-Cl4
Used when you have key-value pairs of data, an input that is mapped to an output

Example: collecting data for a social media post and start with collecting data for the post:
#user.id: 209

message: D5 C5 E5 C4 G4

language: English

datetime = some date

location = some coordinates

dictionaries open with a curly brace and consist of key-value pairs separated by a colon,
and if there are more than one pair of key-values, they are separated by a comma:
post = {'user_id" 209, 'message".'D5 C5 E5 C4 G4', 'language". 'English’,

'datetime". 'some date', 'location": (44.590533, -104.715556)}

Think of this dictionary with a map of 5 inputs (keys) and 5 outputs (values)

This dictionary has multiple data types: an integer, 3 strings, and a tuple of floats

You can also use the dict constructor to make dictionaries, since they are an instance
of the dict class (In constructor, no quotes around key name, but yes quotes when adding:

Question: Why when using the dict constructor do you not put message and language in
quotes?

post_02 = dict(message='SS Cotopaxi', language="English’)

Add additional pieces of data by putting the key name in brackets and using = to assign
#a value.

post.02['user_id"] = 209

post_02['datetime'] = 'some date and time'

To access information FROM a dictionary, also use these brackets:
print(post_02['user_id"])

If you try to print information that is not in a dictionary, you will get a KeyError, which
can be avoided by asking if it is in the dictionary first:
if 'location’ in post_02:
print(post_02['location'])
else:
print('This post does not contain a location value."

You can also use the TRY-EXCEPT commands to avoid key error

try:
print(post_02['location’))
except KeyError:
print('This post does not contain a location value.’

Dictionaries also have many class methods available, such as 'get’

You can use the help function to find out what any of these methods does:
help(post_02.get)

Prints: get(self, key, default=None, /)

53
54
55

56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88

Retumn the value for key if key is in the dictionary, else default.

So we can attempt to get a location from post.02 and assign the default None if it has no
location.

loc = post_02.get('location’, None)

print(loc)

It is common to iterate over all the key-value pairs in a dictionary. A good way to
do this is to loop over all the keys and get the value for each key.
The KEYS method gives us an object we can loop over that contains all the keys in the
dictionary.
for key in postkeys():
value = post[key]

print(key, "=", value)

This prints:

#user.id = 209

message = D5 C5 E5 C4 G4

language = English

datetime = some date

location = (44.590533, -104.715556)

Dictionaries are not ordered data, so the data may print differently.

Another way to iterate over all the key-value pairs is to use the ITEMS method, which will
give you both the key and value in each step of the iteration:
for key, value in post.items():

print(key, '=", value)

To remove an item from a dictionary, you can use the POP or POPITEM method, which
removes
a single item from a dictionary, while the CLEAR method removes all

pop(..)
D.pop(k[.d]) -> v, remove specified key and return the corresponding value.

popitem(self, /)
Remove and return a (key, value) pair as a 2-tuple.

0 N oy L AW N

G U A A DN DD ADMDDAEDIDMDWWWWWWWWWWWRNRNRNNNRNDNDIRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-16-22 - Python and PRIME NUMBERS - Socratica - https://youtu.be/2p3kwFo4xcA

Prime numbers are the building blocks of whole numbers and are central to number theory.
They are a key ingredient in cryptographic methods, like the RSA algorithm.
Using Python to write algorithms to check if a number is a prime number.

Composite numbers can be divided by themselves, 1, and at least one other number.
Primes can only be divided by themselves and 1.
1is called a UNIT and is neither prime nor composite.

First step: check for all divisors from 2 to n-1, skipping 1 and n.

def is_prime_v1(n):
"""Return True if n is a prime number, and return False otherwise."""
ifn==1: #1isnota prime
return False

for d in range(2, n): # Loop through all numbers from 2 to n-1
if n % d ==0: # Check if d (current number) can divide n evenly
return False #if so, nis not prime.

return True # if by the end of the loop we have not found another divisor
otherthan n and 1, n is a prime number, return True.

Test the function:
for n in range(1, 21):
print(n, is_prime_v1(n))

B ooeeeeveeoeeeeeeesosn s #
Now, compute the time it takes to check the numbers up to 100,000
import time

#to = time.time() # Calling time function before and after loop to find out timing
for n in range (1, 100000):
Is_prime_vi(n)

11 = time.time() # This method ends up taking a very long time, and we can do better.
print("Time required = ", t1 - to)

To improve our function, we need to reduce the number of divisors we check.
We only need to test the integers up to the square root of n, because after that, the

factors just repeat but in reverse order:
#12=12X1,12=6X2, 12 =4 X3, 12 = square_root of 12 " 2 <- then it repeats backwards

import math # <- fo work with square roots

This time, only test divisors from 2 up to square root of n.

def is_prime_v2(n):

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

mon i

Return True if n is a prime number, and return False otherwise.
ifn==1: #1isnota prime
return False

max_divisor = math.floor(math.sqrt(n)) # <- floor rounds down from the square root of n

for d in range(2, max_divisor + 1): # <- we add 1 to make sure we test by max divisor
if n % d==0:
return False
return True

print(n, is_prime_v2(n)) # <- testing to see that it works. It does.
Now to see If it is faster than the first version:

to = time.time()
for n in range(1, 100000):
is_prime_v2(n)
t1 = time.time()
print("Time required for version 2 =" t1 -t0) # PRINTS: Time required = o.
15463495254516602

Version 2 takes a tiny fraction of the time version 1 took.

There is, however, still room for improvement. In our loop, we go over all even integers
and there is no reason to do so.
We will now leave out integers greater than 2 that are even.

def is_prime_v3(n):
"""Return True if n is a prime number, and return False otherwise.

o

if n==1: # 1 is not a prime
return False
if n == 2:

return False
ifn>2and n %2 ==0:
return False

max_divisor = math.floor(math.sqrt(n))
for d in range(3, max_divisor + 1, 2): # <- This time we add a step value to skip evens
if n % d==o: # This will filter out half of all our operations
return False
return True

to = time.time()
for n in range(1, 100000):
is_prime_v3(n)
t1 = time.time()
print("Time required for version 3 =", t1 - t0)

104
105
106
107
108
109
110

PRINTS: Time required for version 2 = 0.1607198715209961
Time required for version 3 = 0.09157681465148926

Version 3 is almost twice as version 2.
Look into subject of PSEUDO PRIMES - useful for building or cracking codes
of extremely large numbers

[I N O B

0 N o

08-15-22 - RANDOM NUMBERS - SOCRATICA - https;//youtu.be/zWL3z7NMgAs
Random Module = high variety of functions for generating random numbers
Good for games and Monte Carlo simulations

WARNING: Numbers are only pseudo random with the Python module and should not be
used
for things like cryptography, etc.

import random

dirrandom) <- Gives a list of the various funcions availble.

We will use the random function, which returns a random number in the interval [0,1)
This means it can return the number 0, but it can never return 1, signified by the

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

open parentheses

Display 10 random numbers from the interval [0,1)

for i in range(10):

print(random.random())

PRINTS:
#0.13858663896059498
#0.1929946880789366
#0.4567729086905351
0.4806110226026603
#0.29202033042693043
#0.5519245785751102
#0.22824189839569475
0.4394328413164742
#0.9720256288475281
#0.1551568037910266

The random function represents uniform distribution, the probabilities of numbers being
chosen are evenly spread out over the interval.

Generate random numbers from the interval [3, 7)

def my_random():

Pick a random number, scale by the number that equals the difference between the
first number of your interval and the last. Shift the results up by the number

that represents the start of your interval, and return

return 4*random-random() + 3

This will give us a random number between 3 and 7, since 4 is the difference

between the two, and we shift up by 3, the beginning of our interval

Now, print 10 random numbers with this new random function:

for i in range(10):
print(my_random())

PRINTS:

#5.001405992997202
5.380594209176506
#3.411253829814249

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

#5478507732370224
#4.023061076178072
#4.712313263504037
#4.503480354157892
#6.142813462574594
#3.7769175950334035
#5175132536056271

The UNIFORM function from within the RANDOM module makes it easier to get random
numbers from within an interval. But the examples above show how random.random
can be used to generate customizable random number generators.

print(help(random.uniform))

uniform(a, b) method of random.Random instance
Get a random number in the range [a, b) or [a, b] depending on rounding.

for iin range(10):
print(random.uniform(3,7))

PRINTS:
#4.247857731256662
#5.9709014331771275
#4.601242756144457
#4.752782730265457
#4.278670269607018
#4.182778998116497
#5.440972444859195
#6.7323491517536524
6.082411004744722
#5.381939107234583

Both random and uniform are uniform distributions.

Often times though, other distributions are more preferable, for example

NORMAL DISTRIBUTION, aka, the bell curve, based on the mean (average, where bell
curve peaks) and standard deviation (how wide or narrow the curve is going

out from the mean).

For NORMAL DISTRIBUTION, use the NORMALVARIATE function, to which you must
pass in the mean and the standard deviation.

To print 20 numbers from a bell curve with a 0 mean and standard deviation of 1:

for iin range(20):
print(random.normalvariate(0,1))

PRINTS: <- Bunched around the mean, 0
#0.0901720865424814

#0.49161628220402787

#0.45427611584022276

#1.487465984503258

#-0.5897630928234808

104 # 1.8214563333215432

105 # 1.0482769248437913

106 #-1.3062169087178548

107 #0.3323780135289756

108 # 1.736488336357721

109 #0.30990842135643687

110 #-0.11673472933075174

111 #-0.5572933915273687

112 #1.1592818092763537

113 #0.29770717273116154

114 #1.9014547649237241

115 #-1.2502032426241523

116 #1.7718965428883593

117

118 # The smaller the standard deviation, the more tightly grouped the resulting

119 # random numbers will be. And the larger the standard deviation, the more

120 # spread out they will be.

121

122 # DISCRETE PROBABILITY DISTRIBUTIONS:

123 # What if you want to simulate the roll of a die?

124 # use the RANDINT function! randint(min, max) - you will get a random whole number

125 # between the min and max you give it.

126

127 for iin range(20):

128 print(random.randint(1, ¢))

129

130

131 # RANDOM ELEMENT FROM A LIST: (RANDOM.CHOICE, and pass in the list of values to
choose from)

132 # Apply this to Rock, Paper, Scissors

133

134 outcomes = ['rock’, 'paper’, 'scissors’]

135 for iin range(20):

136 print(random.choice(outcomes))

0 N o L AW

N N = a4 4O a4 a4 A A
= O Vv 0 N o8 U1 A W N = O

22
23

24

25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41

42
43
44
45
46
47

08-14-22 - Socratica - Classes and Objects - https.//youtu.be/apACNr7DC s

Think of a class as a template for creating objects with related data and functions that
do interesting things with that data.

Example will be a program to collect as much data as possible about users on a social
media site:

Define a class by typing class and the name of the class, which should have all words within
It capitalized. Naming the class and typing pass is the simplest class possible. But it allows
us to make users who go in our class.

We will use pass for now, so that we can summarize objects in a class. More details below.
class User():
pass

To make a user, type in the name of the class it will belong to followed by parentheses.
user1 is an instance or object of the User class, which in a way is calling a method of User.
user1 = User()

To attach data to this object, type the name of the object, followed by . and a label for the
data

you want to add. Then give the specific data for that object that fits that label.

A FIELD is data that is attached to an object, which stores data specific to the object it
belongs to.

Fields should not be capitalized. They should be lower case with words separated by
underscores.

user1 first. name = 'Dave’

useri.last. name = 'Bowman’'

To access data about an object, you type it the same way you assigned it.
print(user1 first_name)
print(user1.last_name)

The following variables are not attached to an object and just stand alone. The values are
kept separate

from those assigned to objects in our User class.

first.name = 'Arthur'

last.name = 'Clarke'

print(first.name, last_name)

print(user1 first_name, user1.last.name)

With classes, there is no limit to the number of objects or instances you can make.

To create more objects, use the exact same fields as in the first object, but now for a new
object:

user2 = User()

user2.first.name = 'Frank'

user2.last. name = 'Poole’

print(user1 first_name, useri.last_name)
print(user2 first_ name, user2.last name)

48

49 # You can attach additional information to your objects as desired, and they can be of any
type.

50 usert.age =37

51 user2.favorite_book = '2001: A Space Odyssey'

52

53

54 # Now, user1 and user2 have different fields from each other. If you try to print a field for an

55 # object that has not been assigned, you will get an AttributeError.

56

57 # What separates classes and their objects from dictionaries and other types of data structures

58 # are the additional features available such as Methods, Initialization, Help text, etc.

59

60 # Now, we will define our User class and utilize all the other features, including init, etc.

61

62 # NOTE: When working with classes and their methods, when you are working inside of a class,

63 # the information you want included in the class must all be indented beneath the class.

64 # The moment you unindent to the level of the class itself, you have ended that class.

65

66 class UserExpanded:

67 # When you create a docstring as shown below, you can call the help function on your

68 # class and get back the information that pertains to that class.

69 """ A user / member from the social media site we are compiling information for."""

70 # A function inside of a class is called a METHOD. init is the initialization function,

71 # aka a constructor. It is called every time you create a new instance of the class.

72 # The first argument, self, refers to the object itself that you are creating.

73 # Following self are the arguments you want to include in your instances in the class.

74 def _init_(self, ful_name, birthday):

75 # The arguments need to be stored to fields inside the object, as follows:

76 # The value on the right side of the = is the value provided when you create a user object.
77 # The one following the self. is what stores the value. This is what you use to refer to the
78 # value when working with your objects.

79 self.name = ful_Lname,

80 self.birthday = birthday # format = yyyymmdd

81

82 # Exact first and last methods using the split method, dividing on the space between them
83 # They will be saved in an array, as two strings, which we can use to create the first

84 # and last name variables.

85 # We must use self. when creating these, or we get an attribute error. It needs self. in

86 # order to be attached to the object. Otherwise, it is just a variable that is not

87 # accessible outside the method init, where we currently are. It is only used when writing
88 # the method.

89 name_sections = ful_name.split(" ")

90 self first name = name_sections|o]

91 selflast_name = name_sections[-1]

92

93

94 # Now, when we create an instance or object of this new class, we need to give it values for
the

95 # fields that the init method expects. They will be assigned in the order they were initialized.

96

97

98

99
100
101
102
103
104
105
106
107
108

109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127

Create a method for the user class that will return the age of the user in years:
def age(self):
"""Return the age of the userin years."""
We will compute the user's age, so we need to import the datetime module.
import datetime
First get today's date (using specific date for purposes of training and consistent code:
today = datetime.date(2001, 5, 12)
Convert the user's birthday into a date object (There is a shorter way, but this explains):
yyyy = int(self.birthday[o:4]) # Extracting year, which is the first 4 characters in
mm = int(self.bithday[4:6]) # the birthday string, the month, which is the 5th and éth
dd = int(self.birthday[é:8]) # and the day, which are the last two.
dob = datetime.date(yyyy, mm, dd) # This creates the date of birth from info gathered
above.
If you compute the difference between today and the birthday, you get a time-delta
object.
The time-delta object has a field called days. We can divide by 365 to get the age in
years.
age_in_days = (today - dob).days
age_in_years = age_in_days / 365
Return the age as an integer
return int(age_in_years)

user3 = UserExpanded('David Bowman', '19710321")

print(userz.name)
print(user3.birthday)
print(users first_name)
print(user3.last_name)

user4 = UserExpanded("David Bowman", '19710321")
print(user4.age()) # <- Since age is gotten by the method created above, we need the () to
get it now.

0 N oy L AW N

G U A& A DN DD ADAMDDADIDWWWWWWWWWWWRNRNRNNNRNDNRNDRNRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-22-22 - SPECIAL METHODS - SOCRATICA - https://youtu.be/IkWriReiouA
#_MAGIC METHODS! _ (and apparently how to override them...)

class Snowflake:
pass

flake = Snowflake()
print(dir(flake))

This gives us some, but not all, of the special class methods and attributes:

PRINTS: [_class_' ' delattr ' dict_' ' dir ' doc_' ' eq_|
' format_, ' _ge ' ' getattribute_’, gt ' _hash_’ "init_,
' initsubclass_ " le_" "It " _module_, ' _ne_' _new._|

' _reduce_’ '_reduce_ex_, ' _repr_ '_setattr_' '_sizeof_ ' ' str_|
#'_subclasshook_' '_weakref_]

Some useful special methods:

#_eq_ - called to compare objects for equality

#_setattr_ - called to set an attribute to an object

#_dict_ - special attribute that contains all of the object attributes.

print(flake._dict_) # PRINTS: {} (Currently an empty dictionary of attributes)

flake.first.name = "Jane"
flake.last_.name = "Jones"

print(flake._dict_) # Now PRINTS: [first name' Jane' last name: 'Jones']
class Martian:

"Someone who lives on Mars.
def _init_(self, first.name, last_name):

selffirst.name = first.name # Here is where these attributes are assigned

self.last_name = last.name # to the _dict_ for this class and its objects.

When you assign an attribute to an object, the setattr method is called:
def _setattr_(self, name, value):
print(f'>>> you set {name} = {value}')

m1 = Martian("Robert", "Boudreaux") # This is calling _init_ to create a new object.

m1.arrival_date = '2037-12-21"

print(m1._dict_)

PRINTS: {first name - ‘Robert, last name': '‘Boudreaux’, ‘arrival date": 2037-12-21'}

m2 = Martian("Klaus", "Hohlerfeld")

The _setattr_ method now prints:
>>> you set first.name = Klaus
>>> you set last. name = Hohlerfeld

Saved in the _doc_ method for classes

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

But if we print the _dict_ for Klaus, it contains nothing. Because we redefined the
setattr method, which usually is responsible for communicating with _dict_ to

create and object's dict, that part has not been carried out. We did not make it a
part of our setattr. If we add to setattr: self_dict_[name] = value, it will

create the dictionary for the objects we create under the Martian class.

| am going to continue just listening to this video, because these are not things
that | will ever need to do, but it is good to know how all this works.

the _str_() method will give you and object's hexadecimal address in memory.
the id(object) method will give you a base 10 integer id for the object.

0 N oy L AW N

G U A A DN DD ADMDDAEDIDMDWWWWWWWWWWWRNRNRNNNRNDNDIRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-14-22 - Map, Filter, and Reduce - Socratica - https.//youtu.be/hUeséy2b--0
These functions are primarily used with lists.

MAP
import math

Suppose we have a function that computes the area of a circle with radius(r).

def area_ circle(r):
"""Calculate the area of a circle, with radius r."""
return math.pi * (r ** 2)

What if we want to compute the area of many different circles?
radiilist = [2, 5, 7.1, 0.3, 10]

Method 1: Direct method of creating an empty list of areas and loop over the
list of radii and append each computed area to the list at the end of each loop.

Method 2: Use the MAP function, and do it all in one line.

MAP takes two arguments: a function and your list, tuple, or other iterable object.
Here, MAP will apply the area_circle function to each element in the list of radlii
But the output of the map function when done this way is not a list. It is a map
object, which is actual an iterator over the results.

print(map(area_circle, radiilist)) # <map object at 0x7f97a8209330>

We can turn this into a list by passing the map to the list constructor
#[12.566370614359172, 78.53981633974483,

print(list(map(area_circle, radiilist))) # 158.36768566746147, 0.2827433388230814,
#314.1592653589793]

HOW THE MAP FUNCTION WORKS:
If you have an iterable collection like a list or tuple and want to apply a function
to each piece of data in one short line:

Data = a1, a2, a3, .. an
Function = f
map(f, a) <- Returns - f(a1), f(a2), f(a3,) ... flan) - iterated over

Units: Celsius

Desired Fahrenheit to Celsius Temps List

List of temperature datas in tuples with the name of a city and temp in Celsius.

temps = [('Berlin', 29), ('Cairo’, 3¢), ('Buenos Aires', 19), (Los Angeles’, 26),
(Tokyo', 27), (New York', 28), ('London', 22), (‘Beijing’, 32)]

Function to convert Celsius to Fahrenheit: that will take a tuple as the input and
returmn a tuple with the same name but the temp in Fahrenheit instead of Celsius.

c_to_f =lambda data: (datafo], 9/5 * data[1] + 32)

Now we can create a list of data in Fahrenheit by mapping the converter function

53
54
55
56
57

58
59

60
61
62

63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93

94
95
96
97
98

to our list of data.

print(list(map(c_to_f, temps)))
Prints: [(Berlin', 84.2), (‘Cairo’, 96.8), (Buenos Aires’, 66.2),
(Los Angeles’, 78.80000000000001), ('Tokyo', 80.6), (New York', 82.4), (London’, 71.6), (‘Beijing,

89.6)]

FILTER Function: use to select certain pieces of data from a list, tuple, or other iterable
collection of data.
It filters out the data you do not need.

Suppose you are analyzing some data, and you would like to select all values that are
above the average.
Import the statistics module since it contains the MEAN function:

import statistics

data = [13,2.7,08, 4.1, 43, -0.1]
avg = statistics.mean(data)
print(avg) # Frints: 2.183333333333333

To filter out the values above the average, we use filter similarly to how we use map.
The first argument is a function, and the second is the data we want to apply the function to

print(fiter(lambda x: x > avg, data)) # Prints: <filter object at 0x7fb458253fco>

Once again, not a list, but this time a filter object, which is an iterator over the results.
print(list(filter(lambda x: x > avg, data))) # Prints: [2.7, 4.1, 4.3]

print(ist(filter(lambda x: x < avg, data))) # Prints values below average: [1.3, 0.8, -0.1]

REMOVING MISSING DATA: For when you are working with data that contains empty values

countries = [", 'Argentina’, 'Brazil', 'Chile', ", 'Columbia’, 'Ecuador', ", ", 'Venezuela']

Instead of a function this time for the first argument, we will pass None.
This filters out all values that are treated as false.

print(list(filter(None, countries)))

Prints: [Argentina’, Brazil’, ‘Chile’, 'Columbia’, 'Ecuador’, 'Venezuela'|

In Python, values treated as false are an empty string, '; zero, 0, 0.0, 0j: an empty tuple, ();
an empty list, [J; empty dictionary, {}; False; None; and those objects that signal to Python
that

it is a trivial instance.

Be careful using FILTER in this way, since 0 is often a valid piece of information.

REDUCE: No longer a built-in function and is now in functools. Use when needed, but most
of the

a for loop is more readable.

It works similarly to map and filter in that you pass it a function and the data to which you
want to apply the function:

data = [a1, a2, a3, .. an]

function: f(x, y)

99 # reduce(f, data)
100 # STEP 1:val1 = f(a1, a2)
101 # STEP 2: val2 = f(val1, a3)
102 # STEP 3: val3 = f(val2, a4)
103 # ..
104 # STEP n-1: valn-1 = f(val.n-2, an)
105 # return val.n-1
106
107 #In each step, it applies f to the output value and to the next term in the sequence.
108 # Once it has reached the last piece of data, it will return the final value.
109 # Alternatively, it computes this nested function:
110 # f(f(f(a1, a2), a3) a4)..an)
111
112 from functools import reduce
113 # Multiply all numbers in a list:
114 data =[2,3,5,7 11,13,17, 19, 23, 29]
115 multiplier = lambda x, y: x*y
116 print(reduce(multiplier, data)) — # Prints: 6469693230
117
118 # As a for loop:
119 product =1
120 for x in data:
121 product = product * x
122 print(product) # Prints: 6469693230
123

0 N oy L AW N

NN N NNNRNRNRN-S O 8 A A A A Ao
© N o8 L1 A WN = O V0V 0o NN AW OV

29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45

46
47
48

08-14-22 - LAMBDA EXPRESSIONS: Socratica - https://youtu.be/250vCm9jKTA

Lambda Expressions: Nameless functions. Commonly used for sorting and filtering data.
Lambda is just a keyword that tells Python that what follows will be an anonymous,
or nameless, function.

Write a function to compute (3x + 1)
def f(x):
return 3 * x + 1

print(f(2)) # <- Prints 7

Now let's do this with an anonymous function / lambda expression.

Start by typing lambda, followed by your inputs and a colon, and then the expression that
will be the return value.

#lambda x: 3*x + 1 LAMBDA + INPUTS + COLON + EXPRESSION

Now to use it, we need to give it a name or use it inside some other function or code.
g=lambda x:3 *x + 1

print(g(2)) # <- Frints 7

LAMBDAS with MULTIPLE INPUTS:

Write a function to take the first and last name of a user and combine it into the full
name so that it can be displayed completely on a user interface.

Using strip takes out the leading and trailing white space. And .title makes sure that
only the first letter of the names are capitalized. (Humans are sloppy.)

fulLname = lambda fn, In: fn.strip().title() + ' " + In.strip().title()

example = fulLname(" leonhard", "EULER") # <- Messy user input into first name and last
name fields

printlexample) # <- Prints: Leonhard Euler

Remember: (Optional Name) = LAMBDA + zero or more INPUTS + COLON + a single
EXPRESSION (the return value)
They cannot be used for multi-line functions

EXAMPLES:

lambda : "What is my purpose?”

lambda x: 3*x + 1

lambda x, y: (x*y) **0.5 # Geometric mean
#lambda x, y, z: 3/(1/x + 1)y + 1/z) # Harmonic mean
lambda x1, x2, X3 ..xn <expression>

Lambdas where we do not give it a name: We have a list of scifi authors to organize by last
name.

Some how initials, some have middle names, etc. We will write a function that extracts the last
name and uses that as the sorting value.

scifiiauthors = ['Isaac Asimov', 'Ray Bradbury', 'Robert Heinlein', 'Arthur C. Clarke', 'Frank
Herbert'
'Orson Scott Card', 'Douglas Adams', 'H.G. Wells', 'Leigh Brackett']

Lists have a built-in method, sort, which we will use. We will split on the blank space, access

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

the last part of the name element by using (-1), and convert the string to lower case, to

ensure

the sorting is not case sensitive.

scifiiauthors.sort(key = lambda name: name. split(')[-1].lower())

print(scifi_authors)

The list is now in alphabetical order:

Prints: [Douglas Adams’, 'Isaac Asimov', 'Leigh Brackett, ‘Ray Bradbury', 'Orson Scott Card!
Arthur C. Clarke' 'Robert Heinlein', 'Frank Herbert, 'H.G. Wells]

Write a function that makes functions.
Working with quadratic functions: f(x) = ax"2 + bx + ¢

def build_quadratic_function(a, b, c):
"""Returns the function f(x) = ax"2 + bx + c"""
return lambda x: a*x*2 + b*x + ¢

f = build_guadratic_function(2, 3, -5)
print(f(2))
print(f(1))
print(f(0))

print(build_quadratic_function(3, o, 1)(2)) #3x"2 + 1 evaluated for x = 2

o N o U1 AW N =

W W NN NNDNDNDNDNDNDNMDNDDNDN=2 & A 2O QO 4 a2 a
- O Vv © N o U1 A W N =2 O 0V O N U1 DM W N = O Vv

32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50

LIST MAKING and LIST COMPREHENSION
#FOR LOOPS -> LIST COMPREHENSION

LISTS NUMBER 1:
fruits = ['apples', 'banana’, 'raspberries’, 'blueberries', 'grapefruit’, 'dragonfruit’]
a_fruit list = []
for fruit in fruits:
if 'a"in fruit:
a_fruit listappend(fruit)
print(a_fruit_list)

fruits = ['apples', 'banana’, 'raspberries’, 'blueberries’, 'grapefruit’, 'dragonfruit’]
a_fruit_list = list(filter(lambda fruit: 'a" in fruit, fruits))
print("Fruits with a in their name: ", a_fruit_list)

LISTS NUMBER 2:
dogs = ['chihuahua', 'labrador’, 'terrier', 'mutt’, 'poodle’, 'dingo', 'boxer’, 'golden’]
dogs_with_e =]
for dog in dogs:
if 'e"in dog:
dogs_with_e.append(dog)
print(dogs_with_e)

dogs = ['chihuahua', 'labrador’, 'terrier', 'mutt’, 'poodle’, 'dingo', 'boxer’, 'golden’]

dogs_with_e = list(filter(lambda dog: "e" in dog, dogs))
print("Dogs with e in their name: ", dogs_with_e)

#LISTS NUMBER 3:

pizzas = ['pepperoni, meat', 'cheese', 'margherita’, 'pineapple’, 'meat-lovers, meat’, '

white']
pizzas_meat = []
for pizza in pizzas:
if 'meat’ in pizza:
pizzas_meat.append(pizza)
print(pizzas_meat)

pizzas = ['pepperoni, meat', 'cheese', 'margherita’, 'pineapple’, 'meat-lovers, meat’, '

white']
pizzas_meat = list(filter(lambda pizza: 'meat' in pizza, pizzas))
print("Pizzas with meat: ", pizzas_meat)

LISTS NUMBER 4:

numbers = [1, 2, 3, 4, 5, 6, 7, 8]

squares = ||

for number in numbers:
square = number * number
squares.append(square)

print(squares)

51 numbers = [1,2,3,4,5,6,7, 8]
52 squares = list(map(lambda number: number ** 2, numbers))

53 print("Squares =", squares)

54

5 A e #

56 #STRINGS NUMBER 1 (example from "master notebook" to work from:
57 #a)

58 sentence = "The bear went over the mountain."

59 vowels = [v for v in sentence if v in "aeiou"]

60 print("Strings Number 1a:", vowels)

61

62 #Db)

63 sentence ="If you're happy and you know it, clap your hands!"

64 def is_consonant(letter):

65 vowels = "aeiou’

66 return letterisalpha() and letterlower() not in vowels

67 consonants = [i for i in sentence if is.consonant(i)]

68 print("Strings Number 1b:", consonants)

69

TO oo #

71 # MORE COMPLICATED NUMBER 2:

72 prices = (12.00, 14.75, 15.00, 45.98, 54.00, 34.65)

73 def signed_price(price):

74 return (f'${round(price).2f}’)

75 rounded_prices = [signed_price(i)for i in prices if i > 20]

76 print("More Complicated 2:", rounded_prices)

77

T8 A o #

79 # MORE COMPLICATED NUMBER 3:

80 ages = (12, 8,3, 15,13, 4, 11, 17)

81 older_children = [age for age in ages if age > 12]

82 print("More Complicated 3:", older_children)

83

84 A e #

85 # MORE COMPLICATED NUMBER 4:

86 days = ('Monday', 'Tuesday', 'Wednesday', 'Thursday’, 'Friday', 'Saturday', 'Sunday")
87 weekend = ['Saturday', 'Sunday'|

88 print([i for i in days if i not in weekend)])

89 # QUESTION: Why did | get <generator object <genexpr> at ox7faccoseéféfo> when | printed

until 1

90 # put square brackets inside of the print statement?

91 # Because it is a generator if you have just parentheses or is inside a function, which means
92 #it won't actually do the comprehension until something else iterates on it.
93

94 A #

95 # MORE COMPLICATED NUMBER 5:

96 people = {YJill" 'female’, John" 'male’, 'Hektor" 'male’, 'Ellen": ‘female’, 'Lilly" 'female’, 'Bill".’

male'}

97 men = {name for name, gender in people if gender == 'male'}

98 print(men)

99 # QUESTION: How do | get it to only print the men's names?
100

102
103
104
105
106
107
108

109

110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

MORE COMPLICATED NUMBER 6 (ZIP):

dogs = ['Chester’, 'Francis', 'George', 'Bully’, 'Felix', 'Sandy'|

owners = ['Betty', 'Alfred’, 'Benjamin’, Tammy"', 'Lucy’, 'Hank'|

dogs_owners = list(zip(dogs, owners))

print(dogs_owners)

QUESTION: Why do | get [<zip object at ox7fab50162d00>] if | do not make dogs_owners a list
)

Zip is a generator, and list function runs the generator and iterates through and adds to list
one by one.

As a dictionary

dogs = ['Chester’, 'Francis', 'George', 'Bully', 'Felix', 'Sandy’|

owners = ['Betty', 'Alfred’, 'Benjamin’, Tammy"', 'Lucy’, 'Hank']

dogs_owners = dict(zip(dogs, owners))

print(dogs_owners)

Dictionary version is a ‘'mapping, mapping a key to a value vs the one above that returns a
list of tuples.

https;//www.youtube.com/watchv=AhSvKGTh28Q
Socratica: List Comprehension [| Python Tutorial

Lists = collection of data inside of brackets, separated by commas
List Comprehensions = also surrounded by brackets but with for loops and conditionals
[expression for value in collection, followed by for loop, followed by conditional]
Can have more than one conditional and only items matching all claueses will be added to
list.
Can loop over more than one collection:
[expr for val_1 in collection_1 and expr for val 2 in collection_2]

Examples:

squares = ||
for iin range(1, 101):
squares.append(i**2)

List comprehension version of for loop above.
squares_2 = [i**2 for i in range(1, 101)]

Remainders for squares 1-100 when divided by 5
remainders_by 5 = [i**2 % 5 for x in range(1, 101)]

Remainders for squares 1-100 when divided by 11
remainders_by 11 = [i**2 % 11 for x in range(1, 101)]

Quadratic Reciprocity:

p_remainders = [x**2 % p for x in range(o, p)]
len(p_remainders) = (p+1) / 2

QUESTION: Explain """ - Look it up

149
150
151
152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

Pull out movies that start with G:
movies = ['Star Wars', 'Ghandi', 'Casablanca’, 'Gone with the Wind', 'Citizen Cane"’,
'Gattaca', 'Raiders of the Lost Arc','2001: A Space Odyssey', 'Groundhog Day'|
gmovies = ||
for movie in movies:
if movie startswith('G'):
gmovies.append(movie)

gmovies = [movie for movie in movies if movie.startswith('G')]

Now, movies is a list of tuples that also contains year of release - Get all made before 2000
movies = [('It\'s a Wonderful Life', 1946), ('Spirited Away’, 2001), (No Country for Old Men
’, 2007),

('Gone with the Wind', 1926), ('Citizen Cane', 1941), ('Gattaca', 1997), ('Groundhog
Day’, 1993),

(The Aviator', 2004)]
pre2k_movies = [movie for (movie, year) in movies if year < 2000]
print(pre2k_movies)

SCALAR MULTIPLICATION:
v=[2,-31]

product = [x*4 for x in V]
print(product)

CARTESIAN PRODUCT:

#If A and B are sets, the Cartesian product set of pairs, (a, b), where a isin A and b is in B,
#A={1,3]

#B = {xy}

AxB = {(1.x). (1), 3:x). G.y)]

A=11,357]

B=[246,8]

Use two for loops as shown here:
cartesian_product = [(a, b) for a in A for b in B
print(cartesian_product)

16

50
51

08-15-22 - RANDOM WALK and MONTE CARLO SIMULATION - Socratica - https;//youtu.be/
BfS2H1ystzQ

RANDOM WALK - Direction is chosen at random every step along the way.
What is the longest random walk you can take and on average end up 4 blocks
or fewer from home?

Write a function that simulates a random walk of n blocks for the challenge:
(Way 1 will be simple, clear, and straight forward, while Way 2 will be

focused on being short and using Python shortcuts to cut the length of

the function in half.

B eeeeeeeveoe e eevoo et #

import random

def random_walk(n):
""" This will simulate a random walk. Return coordinates after n blocks
of a random walk. Your position throughout the function will have an
X and y coordinate, both starting at 0."""
X=0
y=0
#n is how many blocks long our random walk is.
for i in range(n):
We will choose from a list of the four possible directions
step = random.choice(['N",'S', 'E', 'W'))
The following expresses the changes in our coordinates depending on
direction we walk in.

if step == 'N"
y=y+1
elif step =='S":
y=y-1
elif step =="E"
X=X+1
else:
X=X-1

return (x, y)

To test the function, let's take 25 random walks, each 10 blocks long
for i in range(25):
walk = random_walk(10)

For each walk, display the coordinates and distance from home.
The distance from home is the sum of the absolute value of the
x and y coordinates.
print(walk, 'Distance from home =",

abs(walk[o]) + abs(walk[1]))

ettt #
MORE COMPACT VERSION!

def random_walk 2(n):

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

mon

More concise version of the random walk function above with
same objective and return."""

Our x and y assignments can be done in one line, assigning the
first value to the first variable and second to second.

X,y=0,0

for i in range(n):
This time instead of randomly choosing N, S, E, or W, we will
choose a random pair of numbers, dx and dy, (difference in x and
difference in y) which will contain the values we will add or
subtract from x and y. The following coordinates represent the
choices of N, S, E, and W and the coordinate shift that goes
with each.
(dx, dy) = random.choice([(o0, 1), (0, -1), (1, 0), (-1, 0)])
Now use dx and dy to update x and y:
X += dx
y +=dy
return x, y

Testing the new function:

for i in range(25):

walk = random.walk_2(10)

print(walk, ‘Distance from home =,
abs(walk[o]) + abs(walk[1]))

B reeeeeeveomeeseeessss s #
MONTE CARLO METHOD TO SOLVE: What is the longest random walk you can take and on
average end up 4 blocks or fewer from home?

We will perform thousands of random trials and compute the percentage of random
walks that end up 4 blocks or fewer from home. If farther than 4 blocks, we will

take transportation home.

To get an accurate output, we will take 10000 random walks for each walk length.

number_of walks = 44000

Estimate the probability you will walk home for walks of length 1 to 30 blocks.
for walk_length in range(1, 31):
Keeps track of how many walks end up in walks 4 blocks or fewer from home.
no_transport = 0
Now for our Monte Carlo loop of 10000 samples:
for i in range(number_of walks):
First, get a random walk of length walk_length
(xy) = random_walk_2(walk_length)
Next compute the distance from home. If the distance is less than 4 blocks
from home, increment the no_transport counter.
distance = abs(x) + abs(y)
if distance <= 4:
no_transport += 1
We can now computer the percentage of walks that ended with a walk home.
It is just the fraction of 10000 random walks that required no transport.

104
105
106
107
108
109
110
111
112
113

no_transport_percentage = float(no_transport) / number_of walks
Finally, print out the results for this walk size:
print("Walk size =", walk_length,
"/ % of no transport =", 100*no_transport_percentage)

08-15-22 - Recursion, the Fibonacci Sequence and Memoization - SOCRATICA - https://youtu.
be/QkozUZW-UM

2 # COUNTING BUNNY REPRODUCTION (which follows fibonacci sequence)

0 N o8 U1 N w

O

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46

To write a function employing the Fibonacci sequence, we must use recursion, and to make
the function
efficient, we will use memoization.

fibonacci=1,1, 2, 3,5, 8, 13, 21

The Fibonacci sequence works like this: the first two numbers are 1s, but after that, each
number is

the sum of the two numbers that come before.

GOAL: Write a fast and clearly-written function returning the nth term of the Fibonacci
sequence.

def fibonacci(n):

if n == 1:
return 1

elif n == 2:
return 1

elifn > 2:
return fibonacci(n - 1) + fibonacci(n - 2)
This is where the recursion happens: the previous two terms are added together
and equal the next term

We will try this out now on the first 10 terms, ranging to 11, since RANGE FUNCTION will go
to
the second to last term when it runs.

for n in range(1, 11):
print(n, ', fioonacci(n)) # Prints 2 columns, n for the loop we are on, and the Fibonacci
sequence integer at that loop level

for n in range(1, 101):
print(n, ":", fibonacci(n)) # The function slows down greatly after the first dozen or so loops
The recursion here makes the computer repeat itself over and over needlessly

MEMOIZATION = the cure for this recursive and demanding function:

ldea = Cache the values = store the values for recent function calls so future calls do not
need

to repeat the work.

1) IMPLEMENTING MEMOIZATION EXPLICITLY to see how it works:
fibonaccicache = {} # For storing recent function calls

Rewrite fibonacci function to check if the nth value we are on is already in our cache.
If it is, simply return it.
def fibonaccimemo(n):
if n in fibonacci_cache:
return fibonaccicache|n]
Otherwise, compute the Nth term, cache it, and return it.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

if n==1:
return 1
elif n == 2:
return 1
elifn > 2:
value = fibonacci_memo(n - 1) + fibonacci_memo(n - 2)
Cache the value
fibonacci_cache[n] = value
return value

Now, it will print the first 100 very quickly.
for n in range(1, 101):
print(n, ":", fibonaccimemo(n))

Try the first 1000 - WHOA!
for n in range(1, 1001):
print(n, ":", fibonaccimemo(n))

2) USE BUILT-IN PYTHON TOOL that makes MEMOIZATION trivial:
This time, more simply put (We will use our first version of the function with it

from functools import lru_cache # <- Stands for Least Recently Used Cache
Provides a 1-line way to implement memoization
@Iru_cache(maxsize=1000) # <- max values to cache, by default, it is 120
def fibonaccifunc(n):
Check that input is a integer, or the tool will not work
if type(n) != int:
raise TypeEror("n must be an integer.") # Raise type error if not an integer
Check that the integer is positive, or it also will not work
ifn<1:
raise ValueError("n must be a positive integer.") # Raise value error if not positive
if n==1:
return 1
elif n ==2:
return 1
elif n > 2:
return fibonaccifunc(n - 1) + fibonacci_func(n - 2)

for n in range(1, 501):
print(n, ", fibonacci_func(n))

Now, print up to 50:
for n in range(1, 51):
print(fibonacci_func(n))

The numbers grow quickly in size.
Now, compute the ratio between consecutive terms:
for n in range(1, 51):

print(fibonacci_func(n+1) / fibonaccifunc(n))

The ratio between consecutive terms converges to the golden ratio by the last 10 or so

99 # prints: 1.618033988749895

