
Getting Started with React 1

Copyright 2023 Code with Mosh codewithmosh.com

Part 1: Fundamentals

http://codewithmosh.com


2

Copyright 2022 Code with Mosh codewithmosh.com

Hi! I am Mosh Hamedani. I’m a software engineer with over 20 
years of experience and I’ve taught millions of people how to code 
and become professional software engineers through my YouTube 
channel and coding school (Code with Mosh).

This PDF is part of my Ultimate React course where you will learn 
everything you need to know from the absolute basics to more 
advanced concepts. You can find the full course on my website. 

https://codewithmosh.com


https://www.youtube.com/c/programmingwithmosh


https://twitter.com/moshhamedani


https://www.facebook.com/programmingwithmosh/


http://codewithmosh.com
http://codewithmosh.com
https://www.youtube.com/c/programmingwithmosh
https://twitter.com/moshhamedani
https://www.facebook.com/programmingwithmosh/


3

Copyright 2022 Code with Mosh codewithmosh.com

Getting Started………………………………………………………………………………..4

Building Components………………………………………………………………………..6

Styling Components………..……………………………………………………………….10

Managing Component State……………….……………………………………………….13

Building Forms………………………………………………………………………………17

Connecting to the Backend…………………………………………………………………22

Table of Content

http://codewithmosh.com


Getting Started with React 4

Copyright 2023 Code with Mosh codewithmosh.com

Getting Started

Components
JavaScript Framework
JavaScript Library

JSX
DOM
Virtual DOM 

Terms

Summary

• React is a JavaScript library for building dynamic and interactive user interfaces.

• In React applications, we don’t query and update the DOM. Instead, we describe our 
application using small, reusable components. React will take care of efficiently creating 
and updating DOM elements.

• React components can be created using a function or a class. Function-based 
components are the preferred approach as they’re more concise and easier to work 
with.

• JSX stands for JavaScript XML. It is a syntax that allows us to write components that 
combine HTML and JavaScript in a readable and expressive way, making it easier to 
create complex user interfaces.

• When our application starts, React takes a tree of components and builds a JavaScript 
data structure called the virtual DOM. This virtual DOM is different from the actual 
DOM in the browser. It’s a lightweight, in-memory representation of our component 
tree.

http://codewithmosh.com


Getting Started with React 5

Copyright 2023 Code with Mosh codewithmosh.com

• When the state or the data of a component changes, React updates the 
corresponding node in the virtual DOM to reflect the new state. Then, it compares 
the current version of virtual DOM with the previous version to identify the nodes 
that should be updated. It’ll then update those nodes in the actual DOM. 

• In browser-based apps, updating the DOM is done by a companion library called 
ReactDOM. In mobile apps, React Native uses native components to render the 
user interface.

• Since React is just a library and not a framework like Angular or Vue, we often 
need other tools for concerns such as routing, state management, 
internationalization, form validation, etc.

http://codewithmosh.com


Building Components 6

Copyright 2023 Code with Mosh codewithmosh.com

Building Components

Fragment
Immutable 
Props 
State hook

Terms

Summary

• In React apps, a component can only return a single element. To return multiple 
elements, we wrap them in a fragment, which is represented by empty angle brackets.

• To render a list in JSX, we use the ‘array.map()’ method. When mapping items, each 
item must have a unique key, which can be a string or a number. 

• To conditionally render content, we can use an ‘if’ statement or a ternary operator. 

• We use the state hook to define state (data that can change over time) in a component. A 
hook is a function that allows us to tap into built-in features in React. 

• Components can optionally have props (short for properties) to accept input. 

• We can pass data and functions to a component using props. Functions are used to 
notify the parent (consumer) of a component about certain events that occur in the 
component, such as an item being clicked or selected.

• We should treat props as immutable (read-only) and not modify them. 

• When the state or props of a component change, React will re-render the component 
and update the DOM accordingly. 

http://codewithmosh.com


Building Components 7

Copyright 2023 Code with Mosh codewithmosh.com

• In React apps, a component can only return a single element. To return multiple 
elements, we wrap them in a fragment, which is represented by empty angle brackets.

• To render a list in JSX, we use the ‘array.map()’ method. When mapping items, each 
item must have a unique key, which can be a string or a number. 

• To conditionally render content, we can use an ‘if’ statement or a ternary operator. 

• We use the state hook to define state (data that can change over time) in a component. A 
hook is a function that allows us to tap into built-in features in React. 

• Components can optionally have props (short for properties) to accept input. 

• We can pass data and functions to a component using props. Functions are used to 
notify the parent (consumer) of a component about certain events that occur in the 
component, such as an item being clicked or selected.

• We should treat props as immutable (read-only) and not modify them. 

• When the state or props of a component change, React will re-render the component 
and update the DOM accordingly. 

http://codewithmosh.com


Building Components 8

Copyright 2023 Code with Mosh codewithmosh.com

CREATING A COMPONENT

RENDERING A LIST

CONDITIONAL RENDERING

http://codewithmosh.com


Building Components 9

Copyright 2023 Code with Mosh codewithmosh.com

DEFINING STATE

HANDLING EVENTS

PROPS

PASSING CHILDREN

http://codewithmosh.com


Styling Components 10

Copyright 2023 Code with Mosh codewithmosh.com

Styling Components

CSS-in-JS
CSS modules
Implementation details
Interface

Inline styles
Modular
Separation of concerns
Vanilla CSS

Terms

Summary

• We have several options for styling React components, including vanilla CSS, CSS 
modules, CSS-in-JS, and inline styles. 

• With vanilla CSS, we write our component styles in a separate CSS file and import it 
into the component file. However, we may encounter conflicts if the same CSS classes 
are defined in multiple files. 

• CSS modules resolve this issue by generating unique class names during the build 
process. 

• With CSS-in-JS, we define all the styles for a component alongside its code. Like CSS 
modules, this provides scoping for CSS classes and eliminates conflicts. It also makes it 
easier for us to change or delete a component without affecting other components.

• The separation of concerns principle suggests that we divide a program into distinct 
sections or modules where each section handles a specific functionality. It helps us build 
modular and maintainable applications. 

• With this principle, the complexity and implementation details of a module are hidden 
behind a well-defined interface.

http://codewithmosh.com


Styling Components 11

Copyright 2023 Code with Mosh codewithmosh.com

• Separation of concerns is not just about organizing code into files, but rather dividing 
areas of functionality. Therefore, CSS-in-JS does not violate the separation of concerns 
principle as all the complexity for a component remains hidden behind its interface.

• Although inline styles are easy to apply, they can make our code difficult to maintain 
over time and should only be used as a last resort.

• We can add icons to our applications using the react-icons library.

• There are several UI libraries available that can assist us in quickly building beautiful 
and modern applications. Some popular options include Bootstrap, Material UI, 
TailwindCSS, DaisyUI, ChakraUI, and more.

http://codewithmosh.com


Styling Components 12

Copyright 2023 Code with Mosh codewithmosh.com

VANILLA CSS

CSS MODULES

CSS-IN-JS

http://codewithmosh.com


Managing Component State 13

Copyright 2023 Code with Mosh codewithmosh.com

Managing Component State

Asynchronous
Lifting state
Pure component 
Strict mode 

Terms

Summary

• The state hook allows us to add state to function components. 

• Hooks can only be called at the top level of components. 

• State variables, unlike local variables in a function, stay in memory as long as the 
component is visible on the screen. This is because state is tied to the component 
instance, and React will destroy the component and its state when it is removed from 
the screen.

• React updates state in an asynchronous manner, so updates are not applied 
immediately. Instead, they’re batched and applied at once after all event handlers have 
finished execution. Once the state is updated, React re-renders our component. 

• Group related state variables into an object to keep them organized. 

• Avoid deeply nested state objects as they can be hard to update and maintain. 

• To keep state as minimal as possible, avoid redundant state variables that can be 
computed from existing variables. 

• A pure function is one that always returns the same result given the same input. Pure 
functions should not modify objects outside of the function.

http://codewithmosh.com


Managing Component State 14

Copyright 2023 Code with Mosh codewithmosh.com

• React expects our function components to be pure. A pure component should always 
return the same JSX given the same input. 

• To keep our components pure, we should avoid making changes during the render 
phase. 

• Strict mode helps us catch potential problems such as impure components. Starting 
from React 18, it is enabled by default. It renders our components twice in development 
mode to detect any potential side effects. 

• When updating objects or arrays, we should treat them as immutable objects. Instead of 
mutating them, we should create new objects or arrays to update the state.

• Immer is a library that can help us update objects and arrays in a more concise and 
mutable way. 

• To share state between components, we should lift the state up to the closest parent 
component and pass it down as props to child components. 

• The component that holds some state should be the one that updates it. If a child 
component needs to update some state, it should notify the parent component using a 
callback function passed down as a prop. 

http://codewithmosh.com


Managing Component State 15

Copyright 2023 Code with Mosh codewithmosh.com

UPDATING NESTED OBJECTS

UPDATING OBJECTS

http://codewithmosh.com


Managing Component State 16

Copyright 2022 Code with Mosh codewithmosh.com

UPDATING ARRAYS

UPDATING ARRAY OF OBJECTS

UPDATING WITH IMMER

http://codewithmosh.com


Building Forms 17

Copyright 2023 Code with Mosh codewithmosh.com

Building Forms

React Hook Form 
Ref hook 
Schema-based validation libraries 
Zod 

Terms

Summary

• To handle form submissions, we set the onSubmit attribute of the form element.

• We can use the ref hook to access elements in the DOM. This technique is often used to 
read the value of input fields upon submitting a form. 

• We can also use the state hook to create state variables and update them as the user 
types into input fields. With this technique, every time the user types a character into an 
input field, the component containing the form gets re-rendered. While in theory this 
can cause a performance penalty, in practice this is often negligible. 

• React Hook Form is a popular library that helps us build forms quickly with less code. 
With React Hook Form, we no longer have to worry about using the ref or state hooks 
to manage the form state. 

• React Hook Form supports the standard HTML attributes for data validation such as 
required, minLength, etc. 

• We can validate our forms using schema-based validation libraries such as joi, yup, zod, 
etc. With these libraries, we can define all our validation rules in a single place called a 
schema.

http://codewithmosh.com


Building Forms 18

Copyright 2023 Code with Mosh codewithmosh.com

HANDLING FORM SUBMISSION

ACCESSING INPUT FIELDS USING THE REF HOOK

http://codewithmosh.com


Building Forms 19

Copyright 2023 Code with Mosh codewithmosh.com

MANAGING FORM STATE USING THE STATE HOOK

MANAGING FORM STATE USING REACT HOOK FORM

http://codewithmosh.com


Building Forms 20

Copyright 2023 Code with Mosh codewithmosh.com

VALIDATION USING HTML5 ATTRIBUTES

DISABLING THE SUBMIT BUTTON

http://codewithmosh.com


Building Forms 21

Copyright 2023 Code with Mosh codewithmosh.com

SCHEMA-BASED VALIDATION WITH ZOD

http://codewithmosh.com


Connecting to the Backend 22

Copyright 2023 Code with Mosh codewithmosh.com

Connecting to the Backend

Axios
Back-end 
Effect hook
Front-end 

HTTP
HTTP request
HTTP response
Side effects 

Terms

Summary

• We use the effect hook to perform side effects, such as fetching data or updating the 
DOM.

• The effect hook takes a function that performs the side effect and an optional array of 
dependencies. Whenever the dependencies change, the effect hook runs again.

• To clean up any resources that were created by the effect hook, we can include a clean-
up function that runs when the component unmounts or the dependencies change.

• React is a library for building front-end user interfaces, but to create complete apps, we 
also need a back-end server to handle business logic, data storage, and other 
functionality.

• The communication between the front-end and the back-end happens over HTTP, the 
same protocol that powers the web. The front-end sends an HTTP request to the back-
end, and the back-end sends an HTTP response back.

• Each HTTP request and response contains a header and a body. The header provides 
metadata about the message, such as the content type and HTTP status code, while the 
body contains the actual data being sent or received.

http://codewithmosh.com


Connecting to the Backend 23

Copyright 2023 Code with Mosh codewithmosh.com

• To send HTTP requests to the backend, we can use axios, a popular JavaScript library. 
axios makes it easy to send requests.

• When we send HTTP requests with the effect hook, we should provide a clean-up 
function to cancel the request if the component is unmounted before the response is 
received. This is important to prevent errors, especially if the user navigates to a 
different page while the request is still pending.

• When sending HTTP requests, we must handle errors properly. This can be done using 
try-catch blocks or by handling the error in the promise chain using .catch().

• Custom hooks are a way to reuse code logic between multiple components. By 
encapsulating logic in a custom hook, we can create reusable pieces of code that can be 
shared across components without duplicating the code. Custom hooks can be used to 
handle common tasks, such as fetching data, and can help to make our code more 
organized and easier to maintain.

http://codewithmosh.com


Connecting to the Backend 24

Copyright 2023 Code with Mosh codewithmosh.com

USING THE EFFECT HOOK

FETCHING DATA WITH AXIOS 

HANDLING ERRORS

http://codewithmosh.com


Connecting to the Backend 25

Copyright 2023 Code with Mosh codewithmosh.com

CANCELLING AN HTTP REQUEST

DELETING DATA

CREATING DATA

UPDATING DATA

http://codewithmosh.com

	Table of Content
	Terms
	Summary
	Terms
	Summary
	Terms
	Summary
	Terms
	Summary
	Terms
	Summary
	Terms
	Summary

