
React Intermediate: State Management
React, React Context, Reducers, Zustand
R

***** App.tsx *****
import CounterNorm from "./state-management/counter/CounterNorm";

import EmotionStatus from "./state-management/emotions/EmotionStatus";

import LoginUseReducer from "./state-management/auth/LoginUseReducer";

import NavBar from "./state-management/tasks/NavBar";

import HomePage from "./state-management/tasks/HomePage";

import TasksProvider from "./state-management/tasks/TaskProvider";

import LoginStatus from "./state-management/auth/LoginStatus";

import TaskList from "./state-management/tasks/TaskList";

import AuthProvider from "./state-management/auth/AuthProvider";

import CounterWithReducer from "./state-management/counter/CounterWithReducer";

import CounterZustand from "./state-management/counter/CounterZustand";

import NavBarZustand from "./state-management/tasks/NavBarZustand";

import UserZustand from "./state-management/auth/UserZustand";

import EmotionStatusZustand from "./state-management/emotions/EmotionsZustand";

import TaskListZustand from "./state-management/tasks/TaskListZustand";

import useUserStore from "./state-management/auth/store";

function App() {

const { user } = useUserStore();

return (

<div className="big_container">

<div className="small_container">

<h3>Normal Counter</h3>

<CounterNorm />

</div>

<div className="small_container">

<h3>Counter with Reducer</h3>

<CounterWithReducer />

</div>

<div className="small_container">

<h3>Task List</h3>

<TaskList />

</div>

<div className="small_container">

<h3>Login Status</h3>

<LoginStatus />

</div>

<div className="small_container">

<h3>Emotion Status</h3>

<EmotionStatus />

</div>

<div className="small_container">

<h3>Login (Youtube)</h3>

<LoginUseReducer />

</div>

<div className="small_container">

<h3>Tasks & Login: React Context</h3>

<AuthProvider>

<TasksProvider>

<NavBar />

<HomePage />

</TasksProvider>

</AuthProvider>

</div>

<hr />

<h2>ZUSTAND</h2>

<div className="small_container">

<h3>Zustand Counter</h3>

<h4>(Counter state shared with navbar counter.)</h4>

<CounterZustand />

</div>

<div className="small_container">

<h3>Zustand User Authentication</h3>

<UserZustand />

<h4>User: {user}</h4>

</div>

<div className="small_container">

<h3>Zustand Emotion Status</h3>

<EmotionStatusZustand />

</div>

<div className="small_container">

<h3>Zustand Task Lists with Input</h3>

<NavBarZustand />

<TaskListZustand />

</div>

</div>

);

}

export default App;

***** CounterNorm.tsx *****
// Reducer: a function that allows for centralization of state updates

import React, { useState } from "react";

const CounterNorm = () => {

const [value, setValue] = useState(0);

return (

<div>

Counter ({value})

<button

onClick={() => setValue(value + 1)}

className="btn btn-primary mx-1"

>

Increment

</button>

<button onClick={() => setValue(0)} className="btn btn-primary mx-1">

Reset

</button>

</div>

);

};

export default CounterNorm;

***** CounterWithReducer.tsx *****
import React, { useReducer, useState } from "react";

import counterReducer from "./counterReducer";

const CounterWithReducer = () => {

/* useReducer is a hook that allows for centralization of state updates

it takes a reducer function and an initial state and returns an array:

1. the current state

2. a dispatch function that updates the state, dispatching an action */

const [value, dispatch] = useReducer(counterReducer, 0);

return (

<div>

Counter ({value})

<button

// dispatch an action to the reducer

onClick={() => dispatch({ type: "INCREMENT" })}

className="btn btn-primary mx-1"

>

Increment

</button>

<button

onClick={() => dispatch({ type: "RESET" })}

className="btn btn-primary mx-1"

>

Reset

</button>

</div>

);

};

export default CounterWithReducer;

***** counterReducer.ts *****
interface Action {

// ensures actions are only of these types, eliminating throwing errors

type: 'INCREMENT' | 'RESET';

}

const counterReducer = (state: number, action: Action): number => {

// INCREMENT is an arbitrary string that we use to identify the action

if (action.type === 'INCREMENT') return state + 1;

if (action.type === 'RESET') return 0;

return state;

}

export default counterReducer;

***** store.tsx (for CounterZustand.tsx) *****
import { create } from "zustand";

import { mountStoreDevtool } from "simple-zustand-devtools";

interface CounterStore {

counter: number;

increment: () => void;

reset: () => void;

}

/* passing the shape of the store, which is CounterStore

arrow function takes set, which is a funciton for updating the state of the store

it returns an object, so the {} is wrapped in () to avoid looking like a block

of code

- increment takes the current state and returns the new state.

- set merges the property into the next state, so we do not have to ...spread things

create returns a custom hook that we can use to access the store

*/

const useCounterStore = create<CounterStore>((set) => ({

counter: 0,

increment: () => set(state => ({ counter: state.counter + 1 })),

reset: () => set(() => ({ counter: 0 })),

}));

/* if we are in development mode, we can mount the store devtool

this will allow us to see the state of the store in the browser

and also allow us to time travel debug with inspect - components */

if (process.env.NODE_ENV === "development") {

mountStoreDevtool("Counter Store", useCounterStore);

}

export default useCounterStore;

***** CounterZustand.tsx *****
import useCounterStore from "./store";

const CounterZustand = () => {

// this can be used in any component to get the state of the counter

const { counter, increment, reset } = useCounterStore();

return (

<div>

Counter ({counter})

<button onClick={() => increment()} className="btn btn-primary mx-1">

Increment

</button>

<button onClick={() => reset()} className="btn btn-primary mx-1">

Reset

</button>

</div>

);

};

export default CounterZustand;

***** TaskList.tsx *****
import { useContext, useReducer, useState } from "react";

import TasksContext from "./tasksContext";

export interface Task {

id: number;

title: string;

}

interface AddTask {

type: "ADD";

task: Task;

}

interface DeleteTask {

type: "DELETE";

taskId: number;

}

export type TaskAction = AddTask | DeleteTask;

// input state is a task array, and returns a taks array

const tasksReducer = (tasks: Task[], action: TaskAction): Task[] => {

switch (action.type) {

case "ADD":

return [action.task, ...tasks];

case "DELETE":

return tasks.filter((task) => task.id !== action.taskId);

}

};

const useTasks = () => useContext(TasksContext);

const TaskList = () => {

const [tasks, dispatch] = useReducer(tasksReducer, []);

return (

<>

<button

onClick={() =>

dispatch({

type: "ADD",

task: { id: Date.now(), title: "Task " + Date.now() },

})

}

className="btn btn-primary my-3"

>

Add Task

</button>

<ul className="list-group">

{tasks.map((task) => (

<li

key={task.id}

className="list-group-item d-flex justify-content-between align-items-center"

>

{task.title}

<button

className="btn btn-outline-danger"

onClick={() => dispatch({ type: "DELETE", taskId: task.id })}

>

Delete

</button>

))}

</>

);

};

export default TaskList;

/* This is a React functional component named TaskList which uses the useReducer

and useState hooks from the React library for state management. The tasks are

managed by a reducer function called tasksReducer that's imported from another

module. This component is intended to render a list of tasks and provide the

functionality to add and delete tasks.

TaskList is a functional component. Inside this component, the useReducer

hook is used to create the tasks state variable and the dispatch function.

The initial state of tasks is an empty array, and tasksReducer is the function

that will manage updates to the tasks state.

The "Add Task" button dispatches an action of type "ADD" to the reducer when

clicked. The dispatch function is used to send this action object to the

tasksReducer. The action object includes a task object with an id (current

timestamp) and title ("Task " followed by the current timestamp).

The tasks are rendered in an unordered list (ul). For each task in the tasks

array, a list item (li) is created with a key of task.id. Each list item contains

the task title and a "Delete" button. The button dispatches a "DELETE" action with

the task's ID when clicked.

*/

***** TaskListContext.tsx *****
import { useContext } from "react";

import LoginContext from "../auth/loginContext";

import TasksContext from "./tasksContext";

// Do no tneed anymore now that we have useTasks hook and TasksProvider

// const useTasks = () => useContext(TasksContext);

const useTasks = () => useContext(TasksContext);

const TaskListContext = () => {

const { tasks, dispatch } = useTasks();

// Tried to use useAuth, but it didn't work.

const { user } = useContext(LoginContext);

return (

<>

<p>User: {user}</p>

<button

onClick={() =>

dispatch({

type: "ADD",

task: { id: Date.now(), title: "Task " + Date.now() },

})

}

className="btn btn-primary my-3"

>

Add Task

</button>

<ul className="list-group">

{tasks.map((task) => (

<li

key={task.id}

className="list-group-item d-flex justify-content-between align-items-center"

>

{task.title}

<button

className="btn btn-outline-danger"

onClick={() => dispatch({ type: "DELETE", taskId: task.id })}

>

Delete

</button>

))}

</>

);

};

export default TaskListContext;

***** tasksContext.ts *****
import React, { Dispatch } from "react";

import { Task, TaskAction } from "./TaskProvider";

interface TasksContextType {

tasks: Task[];

dispatch: Dispatch<TaskAction>;

}

const TasksContext = React.createContext<TasksContextType>({} as TasksContextType)

export default TasksContext;

***** TaskProvider.tsx *****
import { ReactNode, useReducer } from "react";

import TasksContext from "./tasksContext";

export interface Task {

id: number;

title: string;

}

interface AddTask {

type: "ADD";

task: Task;

}

interface DeleteTask {

type: "DELETE";

taskId: number;

}

export type TaskAction = AddTask | DeleteTask;

// input state is a task array, and returns a taks array

const tasksReducer = (tasks: Task[], action: TaskAction): Task[] => {

switch (action.type) {

case "ADD":

return [action.task, ...tasks];

case "DELETE":

return tasks.filter((task) => task.id !== action.taskId);

}

};

interface Props {

// always be sure to import the correct ReactNode, from React

children: ReactNode;

}

const TasksProvider = ({ children }: Props) => {

const [tasks, dispatch] = useReducer(tasksReducer, []);

return (

<TasksContext.Provider value={{ tasks, dispatch }}>

{children}

</TasksContext.Provider>

);

};

export default TasksProvider;

***** NavBar.tsx *****
import { useContext } from "react";

import TasksContext from "./tasksContext";

import LoginStatusContext from "../auth/LoginStatusContext";

const NavBar = () => {

const { tasks } = useContext(TasksContext);

return (

<nav className="navbar d-flex justify-content-between">

Tasks Total: {tasks.length}

<LoginStatusContext />

</nav>

);

};

export default NavBar;

***** HomePage.tsx *****
import TaskListContext from "./TaskListContext";

const HomePage = () => {

return <TaskListContext />;

};

export default HomePage;

***** store.ts (for TaskListZstand.tsx) *****
import { create } from "zustand";

/*

export interface Task {...} and interface TasksStore {...}

These lines define TypeScript interfaces to provide type checking. The Task

interface describes what a Task object should look like, while TasksStore

describes the structure and types of the Zustand store.

*/

export interface Task {

id: number;

title: string;

}

interface TasksStore {

tasks: Task[];

taskTitle: string;

addTask: () => void;

deleteTask: (id: number) => void;

setTaskTitle: (title: string) => void;

}

/*

const useTasksStore = create<TasksStore>((set) => {...});

Here, the create function is called to create a new Zustand store. The TasksStore

interface is passed as a type parameter to ensure the created store conforms to

the defined structure. The create function takes a callback function as an argument,

which receives a set function to be used for updating the store's state.

tasks: [], taskTitle: "",

Inside the callback, initial states for the tasks array and taskTitle string are set

to an empty array and an empty string, respectively.

addTask: () => set((state) => {...}),

This line defines an addTask action for adding a new task to the tasks array. The

set function updates the state by taking a function that receives the current state

and returns the new state. A new task is created with a unique ID (using Date.now())

and the current taskTitle. The new task is added to the end of the tasks array and

taskTitle is reset to an empty string.

deleteTask: (id) => set((state) => {...}),

This line defines a deleteTask action for deleting a task from the tasks array. The

set function updates the tasks array to a new array that does not include the task

with the given ID.

setTaskTitle: (title) => set(() => ({ taskTitle: title }))

This line defines a setTaskTitle action for updating the taskTitle state. The set

function updates the taskTitle state to the passed title.

*/

const useTasksStore = create<TasksStore>((set) => ({

tasks: [],

taskTitle: "",

addTask: () => set((state) => {

const newTask = { id: Date.now(), title: state.taskTitle };

return { tasks: [...state.tasks, newTask], taskTitle: "" };

}),

deleteTask: (id) => set((state) => ({ tasks: state.tasks.filter((task) => task.id !== id) })),

setTaskTitle: (title) => set(() => ({ taskTitle: title }))

}));

export default useTasksStore;

***** TaskListZustand.tsx *****
import useTasksStore from "./store";

import useUserStore from "../auth/store";

const TaskListZustand = () => {

/*

const { tasks, addTask, deleteTask, taskTitle, setTaskTitle } = useTasksStore();

const { user, login, logout } = useUserStore();

Here, we're using destructuring assignment to get various properties from our

Zustand stores. From useTasksStore, we're getting the current list of tasks,

the current task title, and the functions to add a task, delete a task, and set

the task title. From useUserStore, we're getting the current user and the functions

to log in and log out.

*/

const { tasks, addTask, deleteTask, taskTitle, setTaskTitle } =

useTasksStore();

const { user, login, logout } = useUserStore();

return (

/* This is the render function of the TaskListZustand component. It specifies what the

component should output to the DOM. */

<>

{/* This line renders a paragraph with the current user's name. */}

<p>User: {user}</p>

{/* This line renders an input element. The value of the input is bound to the

taskTitle from the Zustand store, and whenever the value changes due to

user input, it calls the setTaskTitle function to update the task title in

the store. */}

<input

type="text"

value={taskTitle}

onChange={(e) => setTaskTitle(e.target.value)}

/>

{/* This line renders a button that, when clicked, calls the addTask function

from the Zustand store. This function will create a new task with the

current taskTitle and add it to the tasks list. The ul element contains a

map function which maps each task in the tasks array to a li element,

displaying the task title and a Delete button. */}

<button onClick={addTask} className="btn btn-primary my-3">

Add Task

</button>

<ul className="list-group">

{tasks.map((task) => (

<li

key={task.id}

className="list-group-item d-flex justify-content-between align-items-center"

>

{task.title}

{/* Inside each li, there is a Delete button that, when clicked, calls

the deleteTask function from the Zustand store with the id of the

task. This function will remove the task with the given id from the

tasks list. */}

<button

className="btn btn-outline-danger"

onClick={() => deleteTask(task.id)}

>

Delete

</button>

))}

</>

);

};

export default TaskListZustand;

***** NavBarZustand.tsx *****
import useCounterStore from "../counter/store";

import UserZustand from "../auth/UserZustand";

import useTasksStore from "./store";

const NavBarZustand = () => {

const { tasks } = useTasksStore();

// Using store to get counter state, not as object now, but as a value

const counter = useCounterStore((s) => s.counter);

return (

<nav className="navbar d-flex justify-content-between">

Tasks Total: {tasks.length}

Counter: {counter}

<UserZustand />

</nav>

);

};

export default NavBarZustand;

***** LoginStatus.tsx *****
import { useReducer } from "react";

import { loginReducer } from "./AuthProvider";

const LoginStatus = () => {

const [user, dispatch] = useReducer(loginReducer, "");

if (user)

return (

<>

<div>

<button

onClick={() => dispatch({ type: "LOGOUT" })}

className="btn btn-primary mx-1"

>

Logout

</button>

{user}

</div>

</>

);

return (

<div>

<button

onClick={() => dispatch({ type: "LOGIN", username: "Evan.Marie" })}

className="btn btn-primary mx-1"

>

Login

</button>

</div>

);

};

export default LoginStatus;

***** LoginStatusContext.tsx *****
import { useContext } from "react";

import LoginContext from "./loginContext";

const LoginStatusContext = () => {

// Tried to use AuthContext, but it didn't work.

// const { user, dispatch } = useAuth();

const { user, dispatch } = useContext(LoginContext);

if (user)

return (

<>

<div>

{user}

<button

onClick={() => dispatch({ type: "LOGOUT" })}

className="btn btn-primary mx-1"

>

Logout

</button>

</div>

</>

);

return (

<div>

<button

onClick={() => dispatch({ type: "LOGIN", username: "Evan.Marie" })}

className="btn btn-primary mx-1"

>

Login

</button>

</div>

);

};

export default LoginStatusContext;

***** loginContext.ts *****
import React, { Dispatch } from "react";

import { authAction } from "./AuthProvider";

interface LoginContextType {

user: string;

dispatch: Dispatch<authAction>;

}

const LoginContext = React.createContext<LoginContextType>({} as LoginContextType)

export default LoginContext;

***** AuthProvider.tsx *****
import { ReactNode, useReducer } from "react";

import LoginContext from "./loginContext";

interface LoginAction {

type: "LOGIN";

username: string;

}

interface LogoutAction {

type: "LOGOUT";

}

export type authAction = LoginAction | LogoutAction;

export const loginReducer = (state: string, action: authAction): string => {

if (action.type === "LOGIN") return action.username;

if (action.type === "LOGOUT") return "";

return state;

};

interface Props {

// always be sure to import the correct ReactNode, from React

children: ReactNode;

}

const AuthProvider = ({ children }: Props) => {

const [user, dispatch] = useReducer(loginReducer, "");

return (

<LoginContext.Provider value={{ user, dispatch: dispatch }}>

{children}

</LoginContext.Provider>

);

};

export default AuthProvider;

***** useAuth.ts *****
import { useContext } from "react";

import LoginContext from "./loginContext";

const useAuth = () => useContext(LoginContext);

export default useAuth;

***** store.ts (for UserZustand.tsx) *****
import { create } from "zustand";

interface UserStore {

user: string;

login: (username: string) => void;

logout: () => void;

}

/* instead of state as the parameter for set, we can use () to indicate that we

do not need the current state, since we are just setting the user to the username

and we are not computing the next state based on the current state */

const useUserStore = create<UserStore>(set => ({

user: '',

login: username => set(() => ({ user: username })),

logout: () => set(() => ({ user: '' }))

}));

export default useUserStore;

***** UserZustand.tsx *****
import useUserStore from "./store";

const UserZustand = () => {

const { user, login, logout } = useUserStore();

if (user)

return (

<>

<div>

<button onClick={() => logout()} className="btn btn-primary mx-1">

Logout

</button>

{/* {user} */}

</div>

</>

);

return (

<div>

<button

onClick={() => login("Evan.Marie")}

className="btn btn-primary mx-1"

>

Login

</button>

</div>

);

};

export default UserZustand;

***** useLogin.ts *****
/*

from Youtube: https://www.youtube.com/watch?v=9KzQ9xFSAEU

This function can be used to simulate a login operation in a testing

environment or while developing the UI of a login feature, before a real

server-side authentication system is implemented.

This defines a TypeScript type named Props, which is an object with two

properties: username and password. Both properties are of the string type.

This Props type is used to specify the type of the argument that the

useLogin function expects.

*/

type Props = {

username: string;

password: string;

}

/*

The useLogin function is an asynchronous function that takes an object as

an argument. This object must have a username and a password property, as

defined by the Props type. The function returns a Promise that doesn't

resolve with any value (hence void).

Inside the function, a setTimeout is used to simulate a delay that you

might experience when making a real asynchronous request to a server.

After 1 second (1000 milliseconds), the callback function passed to

setTimeout is executed.

In this callback function, if the username is "evan" and the password

is "password", the Promise is resolved using the resolve function. If

the username and password don't match these values, the Promise is

rejected using the reject function.

*/

async function useLogin({ username, password }: Props) {

return new Promise<void>((resolve, reject) => {

setTimeout(() => {

if (username === 'evan' && password === 'password') {

resolve();

} else {

reject();

}

}, 1000);

});

}

export default useLogin;

***** LoginUseReducer.tsx *****
/*

from Youtube: https://www.youtube.com/watch?v=9KzQ9xFSAEU

*/

import React, { useReducer } from "react";

import useLogin from "./useLogin";

/*

The LoginUseReducer function represents a component that provides a

form for user login, handles login and logout actions, and displays a

welcome message to the logged-in user.

Here an interface LoginState is defined to specify the shape of the state

object. The initialState is the initial state for the login form, which

is an object of type LoginState.

*/

const initialState: LoginState = {

username: "",

password: "",

isLoading: false,

error: "",

isLoggedIn: false,

variant: "login",

};

interface LoginState {

username: string;

password: string;

isLoading: boolean;

error: string;

isLoggedIn: boolean;

variant: "login" | "forgetPassword";

}

/*

A LoginAction type is defined for actions that can be dispatched to the reducer.

It can either be an object with a type of "login", "success", "error", or "logOut",

or an object with a type of "field" and additional properties fieldName and payload.

*/

type LoginAction =

| { type: "login" | "success" | "error" | "logOut" }

| { type: "field"; fieldName: string; payload: string };

/*

Defining the Reducer Function:

The loginReducer function is defined to handle state changes based on dispatched

actions. It takes the current state and an action, and returns a new state. Each

case in the switch statement corresponds to a different action type.

*/

function loginReducer(state: LoginState, action: LoginAction) {

switch (action.type) {

case "field": {

return {

...state,

[action.fieldName]: action.payload,

};

}

case "login": {

return {

...state,

error: "",

isLoading: true,

};

}

case "success": {

return {

...state,

isLoggedIn: true,

isLoading: false,

};

}

case "error": {

return {

...state,

error: "Incorrect username or password!",

isLoggedIn: false,

isLoading: false,

username: "",

password: "",

};

}

case "logOut": {

return {

...state,

isLoggedIn: false,

};

}

default:

return state;

}

}

/*

Creating the LoginUseReducer Component:

In the LoginUseReducer component, the useReducer hook is used to create the state

variable and the dispatch function. The loginReducer is the function that manages

updates to the state, and initialState is the initial value of the state.

The onSubmit function is an asynchronous function that handles the form submission.

It first dispatches a "login" action, then it calls the useLogin function with the

username and password from the state. If useLogin resolves, a "success" action is

dispatched. If useLogin rejects, an "error" action is dispatched.

*/

export default function LoginUseReducer() {

const [state, dispatch] = useReducer(loginReducer, initialState);

const { username, password, isLoading, error, isLoggedIn } = state;

const onSubmit = async (e: React.FormEvent) => {

e.preventDefault();

dispatch({ type: "login" });

try {

await useLogin({ username, password });

dispatch({ type: "success" });

} catch (error) {

dispatch({ type: "error" });

}

};

/*

Rendering the Component:

In the return statement, the component renders a form for login if the user is

not logged in (isLoggedIn is false), and a welcome message and a "Log Out"

button if the user is logged in (isLoggedIn is true).

In the login form, the username and password fields are controlled inputs that

dispatch "field" actions when their values change. The isLoading state variable

is used to disable the submit button and change its text while the login operation

is in progress.

If the error state variable is not an empty string, an error message is displayed

above the form.

*/

return (

<div className="App">

<div className="login-container">

{isLoggedIn ? (

<>

<h1>Welcome {username}!</h1>

<button onClick={() => dispatch({ type: "logOut" })}>

Log Out

</button>

</>

) : (

<form className="form" onSubmit={onSubmit}>

{error && <p className="error">{error}</p>}

<p>Enter username and password:</p>

<input

type="text"

placeholder="username"

value={username}

onChange={(e) =>

dispatch({

type: "field",

fieldName: "username",

payload: e.currentTarget.value,

})

}

/>

<input

type="password"

placeholder="password"

autoComplete="new-password"

value={password}

onChange={(e) =>

dispatch({

type: "field",

fieldName: "password",

payload: e.currentTarget.value,

})

}

/>

<button

type="submit"

disabled={isLoading}

className="btn btn-primary mx-1"

>

{isLoading ? "Logging in..." : "Login"}

</button>

</form>

)}

</div>

</div>

);

}

/*

More of "FIELD ACTION":

A "field" action in this context is an action object that is used to update the value of a field

in the state. In this case, the fields are username and password in the state object.

Here's the definition of a "field" action from the LoginAction type:

{ type: "field"; fieldName: string; payload: string }

- type: The type of the action. In this case, it's a string with the value

"field".

- fieldName: The name of the field to update. It's a string that should match

one of the keys in the state object (username or password).

- payload: The new value for the field. It's a string that will be used to

update the value of the field.

When a "field" action is dispatched to the reducer, the reducer updates the value

of the specified field in the state. Here's the relevant code from the loginReducer

function:

case "field": {

return {

...state,

[action.fieldName]: action.payload,

};

}

This code creates a new object that is a copy of the current state, but with the

specified field updated to the new value.

Here's an example of a "field" action being dispatched when the value of the

username input field changes:

onChange={(e) =>

dispatch({

type: "field",

fieldName: "username",

payload: e.currentTarget.value,

})

}

In this code, an onChange event handler dispatches a "field" action with the

fieldName set to "username" and the payload set to the current value of the input

field. This will update the username field in the state with the current value of

the input field.

*/

***** EmotionStatus.tsx *****
import React from "react";

import { useReducer } from "react";

import emotionReducer, { EmotionAction } from "./emotionReducer";

const EmotionStatus = () => {

const [message, dispatch] = useReducer(emotionReducer, "");

const handleButtonClick = (type: EmotionAction["type"]) => {

dispatch({ type });

};

return (

<>

<div className="emotion_buttons">

<button

onClick={() => handleButtonClick("HAPPY")}

className="btn btn-primary mx-1"

>

😃 HAPPY!

</button>

<button

onClick={() => handleButtonClick("SAD")}

className="btn btn-primary mx-1"

>

🤕 sad...

</button>

<button

onClick={() => handleButtonClick("FEISTY")}

className="btn btn-primary mx-1"

>

😜 FEISTY!

</button>

<button

onClick={() => handleButtonClick("MEH")}

className="btn btn-primary mx-1"

>

😒 meh...

</button>

</div>

<div className="emotion_message">

{message}

</div>

</>

);

};

export default EmotionStatus;

/* - The EmotionStatus functional component is defined. It represents the

component responsible for displaying buttons and the corresponding

message based on the selected emotion.

- Inside the component, the useReducer hook is used to initialize the

state and dispatch function. It takes two arguments: the emotionReducer

function (imported from the reducer file) and the initial state value,

which is an empty string "". The hook returns the current state value

(message) and the dispatch function.

- The handleButtonClick function is defined to handle button clicks. It

takes a parameter type with the type of EmotionAction["type"]. When a

button is clicked, this function is called with the corresponding action

type, and it dispatches the action by invoking dispatch with the action

object { type }.

- The component's JSX code renders a series of buttons representing

different emotions. Each button has an onClick event handler that invokes

the handleButtonClick function with the corresponding action type ("HAPPY",

"SAD", "FEISTY", or "MEH").

- The component also includes a element to display the current

message state value. This element is rendered within a <div> element with

the class name "emotion_message".

- The component uses the useReducer hook to manage state and dispatch

actions based on button clicks. The handleButtonClick function dispatches

the corresponding action type, and the reducer (defined in the reducer

file) handles the actions to update the state accordingly. The

component renders buttons and displays the message based on the

current state value.

*/

***** emotionsReducer.tsx *****
export type EmotionAction = {

type: "HAPPY" | "SAD" | "FEISTY" | "MEH";

};

const emotionReducer = (state = "", action: EmotionAction) => {

switch (action.type) {

case "HAPPY":

return "I am so happy today!"

case "SAD":

return "I am so sad today..."

case "FEISTY":

return "I am feeling feisty today!"

case "MEH":

return "I am just meh..."

default:

return state;

}

}

export default emotionReducer;

/*

- The EmotionAction type is defined as a TypeScript type. It specifies

that an action should have a type property with one of the values: "HAPPY",

"SAD", "FEISTY", or "MEH". This type is used to enforce type safety and

ensure that only valid action types are used.

- The emotionReducer function is defined, which takes two parameters: state

and action. The state parameter represents the current state, and the action

parameter represents the action being dispatched.

- Inside the emotionReducer function, a switch statement is used to handle

different action types. The action.type property is evaluated to determine

which case matches the type of the action being dispatched.

- In each case, the reducer returns a new state based on the action type.

For example, if the action type is "HAPPY", the reducer returns the string

"I am so happy today!". Similarly, for other action types like "SAD", "FEISTY",

and "MEH", appropriate strings are returned.

- If the action type does not match any of the cases, the default case is executed,

and the current state is returned as is.

- The reducer is responsible for handling actions and updating the state

accordingly. It receives the current state and an action, and based on the

action type, it returns a new state. The use of the switch statement allows

the reducer to easily handle different action types and define the

corresponding behavior for each type.

- It's important to note that the reducer function should be a pure function,

meaning it should not modify the original state. Instead, it should return a

new state object or value based on the provided inputs.

*/

***** store.ts (for EmotionsZustand.tsx) *****
import { create } from "zustand";

/*

The EmotionsStore interface is declared to define the shape of the state store.

It includes two properties: emotion and message, and two methods for updating these

properties: setEmotion and setMessage.

*/

export interface EmotionsStore {

emotion: "HAPPY" | "SAD" | "FEISTY" | "MEH" | null;

message: string;

setEmotion: (emotion: EmotionsStore["emotion"]) => void;

setMessage: (message: string) => void;

}

/*

const useEmotionsStore = create<EmotionsStore>((set) => ({... creates a new Zustand

store using the create function. The set function is used to update the state in the

store.

- emotion: null, and message: "", are the initial states for the emotion and

message properties.

- setEmotion: (emotion: EmotionsStore["emotion"]) => set({ emotion }) is a

function that takes an emotion as argument and uses the set function to

update the emotion property in the state.

- Similarly, setMessage: (message: string) => set({ message }) is a function that

takes a message string and uses the set function to update the message property

in the state.

*/

const useEmotionsStore = create<EmotionsStore>((set) => ({

emotion: null,

message:"",

setEmotion: (emotion: EmotionsStore["emotion"]) => set({ emotion }),

setMessage: (message: string) => set({ message }),

}));

/*

getEmotionMessage function is a utility function that takes an emotion and returns a

string message associated with the given emotion.

*/

export const getEmotionMessage = (emotion: EmotionsStore["emotion"]) => {

switch (emotion) {

case "HAPPY":

return "I am so happy today!"

case "SAD":

return "I am so sad today..."

case "FEISTY":

return "I am feeling feisty today!"

case "MEH":

return "I am just meh..."

default:

return "";

}

};

export default useEmotionsStore;

***** EmotionsZustand.tsx *****
import useEmotionsStore, { EmotionsStore, getEmotionMessage } from "./store";

/*

const { emotion, setEmotion, setMessage } = useEmotionsStore(); This line is using

the useEmotionsStore hook to access the current state of the Zustand store and the

functions for updating the state.a

*/

const EmotionStatusZustand = () => {

const { emotion, setEmotion, setMessage } = useEmotionsStore();

/*

handleButtonClick is a function that takes an emotion as argument.

Inside this function, it calls setEmotion and setMessage, effectively

updating the emotion and message properties in the state store.

*/

const handleButtonClick = (emotion: EmotionsStore["emotion"]) => {

setEmotion(emotion);

setMessage(emotion ? getEmotionMessage(emotion) : "");

};

/*

The return statement is the render method of this functional component. It includes

four buttons, each associated with a different emotion. When a button is clicked, the

handleButtonClick function is called with the corresponding emotion.

In the div with the class emotion_message, it displays the message associated with

the current emotion in the state. It uses a ternary operator to check if emotion

exists, and if it does, it calls getEmotionMessage to get the associated message.

If emotion does not exist (null), it displays an empty string.

*/

return (

<>

<div className="emotion_buttons">

<button

onClick={() => handleButtonClick("HAPPY")}

className="btn btn-primary mx-1"

>

😃 HAPPY!

</button>

<button

onClick={() => handleButtonClick("SAD")}

className="btn btn-primary mx-1"

>

🤕 sad...

</button>

<button

onClick={() => handleButtonClick("FEISTY")}

className="btn btn-primary mx-1"

>

😜 FEISTY!

</button>

<button

onClick={() => handleButtonClick("MEH")}

className="btn btn-primary mx-1"

>

😒 meh...

</button>

</div>

<div className="emotion_message">

{emotion ? getEmotionMessage(emotion) : ""}

</div>

</>

);

};

export default EmotionStatusZustand;

***** About React Context *****
/*

React Context is a feature in React that allows you to pass data through the

component tree without having to pass it down manually through props at every

level. It's particularly useful when you need to share global data or state,

like a user's authentication status, theme settings, or a global store. Here

are the main aspects of React Context:

Creating a Context:

To create a context, you use the React.createContext function. It returns

a Context object with two main components: Provider and Consumer (or

useContext hook).

*/

const MyContext = React.createContext();

/*

Context Provider:

The Provider is a component that wraps the part of your component tree that

needs access to the context data. It accepts a prop called value, which is the

data you want to pass to the components in the tree.

*/

<MyContext.Provider value={someData}>

{/* Your component tree that needs access to the context data */}

</MyContext.Provider>;

/*

Accessing Context Data:

There are two main ways to access the data provided by a context:

Context Consumer: This is a component that can be used to access the context

value directly within the render method. It accepts a function as a child,

and that function receives the context value as an argument.

*/

<MyContext.Consumer>

{(contextValue) => {

// You can use the contextValue in your JSX here

}}

</MyContext.Consumer>;

/*

useContext Hook: In functional components, you can use the useContext hook to

access the context value. This hook accepts the context object as an argument

and returns the current context value.

*/

import { useContext } from "react";

function MyComponent() {

const contextValue = useContext(MyContext);

// You can use the contextValue in your JSX or logic here

}

/*

Updating Context Data:

To update the context data, you can either change the value passed to the

Provider or, more commonly, use a combination of context and state management

techniques, like using the context to provide a state and a dispatch function

(similar to how the useReducer hook works).

**

WHEN TO and WHEN NOT TO USE REACT CONTEXT:

* CLIENT STATE: the data that represents the state of the client / UI, i.e. current

user, selected theme, etc.

- For managing client state, local state can be saved in a component with useState or

useReducer (for more complicated state management), and React Context can be used

to share it with the child component.

- This often involves lifting the state up to a parent component so it can be

shared with its children

* SERVER STATE: the data fetched from the backend

- not a good place to use React Context, which would complicate the component

tree very quickly.

- React Query is a better choice here.

- Contexts should have a single responsibility and be split up to minimize re-rendering

- State Management Libraries: Redux, MobX, Recoil, xState, Zustand, etc. (Zustand is

simplest and works for most applications.)

**

CHATGPT EXPLAINS WHEN TO AND NOT TO USE REACT CONTEXT:

React Context is a built-in state management feature in React that helps pass data down

the component tree without having to pass props manually at every level. The context

system can be a great tool to manage state, but it's not always the right tool for every

job.

* Here are some scenarios where you may want to use React Context:

- Prop Drilling: If you're experiencing a problem with "prop drilling", where props

need to be passed through multiple components before reaching the one that actually

uses the prop, then React Context can be a good solution. It enables you to share

value or state to the components that need it without going through intermediates.

This keeps your code cleaner and easier to manage.

- Shared State: When you have global state that multiple components or component

trees need access to. For example, if you have user authentication information

that many components need to access, React Context is a good tool to use.

- Theme Management: If you are changing the look and feel of your application and

the changes need to be reflected across multiple components, React Context is a

great choice. You can store the current theme in the context and use it throughout

the application.

* However, there are also scenarios where React Context may not be the best choice:

- High-frequency Updates: If your state changes very frequently (like the position

of a cursor in a drawing app), using context can cause unnecessary re-renders and

negatively impact performance. In this case, you might want to explore other

alternatives like storing the state locally or using other state management

libraries optimized for frequent updates.

- Very Large Applications: In large-scale applications with complex state

management needs, Redux or MobX might be better suited because they provide more

robust solutions for managing state with middlewares, and they have better tools

for debugging state changes.

- Small, isolated state: If a piece of state only affects one or a small number

of components, using local component state with useState or useReducer would be

a more straightforward choice. Using context in this case would be an overkill

and may make the component harder to understand and reuse.

- Very Local or Temporary States: Things like form input values, hover states,

or toggled visibility are typically best kept in local component state. They're

not usually beneficial to other parts of the app, so there's no need to use context.

* Remember that Context is just a tool, and like any tool, its efficacy depends on the

situation. It can sometimes be the perfect solution, but other times there may be better

options available. When you're considering whether to use Context, it can help to think

about what problem you're trying to solve and whether Context is the best tool for that

specific problem.

**

CHAT GPT EXPLAINS REDUX:

* Redux is a predictable state container for JavaScript applications. It was designed

to help you manage global state in an application, particularly when dealing with

complex flows of data and intricate UIs. Redux was inspired by Facebook's Flux

architecture and influenced by functional programming concepts, especially the

Elm architecture.

** FLUX is an application architecture for building client-side web applications.

It was developed by Facebook to complement React's components by utilizing a

unidirectional data flow. It's more of a pattern rather than a formal framework,

and you can use it immediately with React in your applications.

Flux is comprised of a few parts: Actions, Dispatcher, Stores, and Views (React

components). The flow of data in Flux is as follows:

* Actions: User interactions in the view cause dispatches of actions (simple objects

containing the new data and type of action).

* Dispatcher: Acts as a central hub where callbacks are registered. Each store

registers itself and provides a callback.

* Stores: They contain the application's state and logic. Whenever an action is

dispatched, the store's callback is invoked, and depending on the action type,

it will execute some logic and update the state.

* Views: React components grab the state from the Stores and re-render. They also

pass down callback functions to the child components to propagate new actions.

The dispatcher, stores, and views are independent nodes with distinct inputs and

outputs, and actions flowing in a single direction, which keeps the system easier

to reason about.

** ELM is a functional language that compiles to JavaScript, and it's known for its

strong type safety and friendly error messages. It was designed to build reliable,

robust, and efficient web applications.

Elm enforces a simple, yet strict architecture pattern called The Elm Architecture

(TEA), comprising three fundamental parts:

* Model: The state of your application.

* Update: A function to update your state with some new data. This function is

pure, meaning given the same input, it will always return the same output without

producing any side effects.

* View: A function to render HTML based on the state.

These three parts are wired together in a cyclical pattern: user interaction in the

View generates a command for the Update, the Update function processes commands and

updates the Model, and the changed Model triggers a re-render of the View.

Elm is commonly praised for its performance and simplicity, as well as for its

innovative features like time-traveling debugger, where developers can go back and

forth in their code to inspect their app at different points in time. It has

influenced JavaScript frameworks like Redux and has been used as an alternative to

JavaScript for building web frontends.

* Redux is most often used with libraries like React and Angular, but it can be used

with any view library. It is tiny (about 2KB) and has no dependencies.

* Here's a brief overview of some key concepts in Redux:

- Store: The Redux store is a JavaScript object that holds the global state of

the application. It is the single source of truth for state within your

application.

- Actions: Actions are plain JavaScript objects that represent what happened

in the app. They are the only way you can send data (payload) to the Redux store.

Every action must have a type field which tells what kind of action it is.

- Reducers: Reducers are pure functions that take the current state of the

application and an action, then return a new state. They describe how the

application's state changes in response to actions sent to the store.

* The primary use case for Redux is managing complex state interactions that are hard

to express with React’s component state. It is also handy when you are dealing with

shared state that needs to be accessed by multiple components.

* Here's when you might want to use Redux:

- Complex state interactions: If you have actions that have side effects or are

asynchronous (like network requests), or if multiple places need to respond to

the same action, Redux can be a good choice.

- Shared, global state: If you have state that needs to be shared amongst many

components, or different parts of the state tree that need to be related, Redux

can provide a central store for all of this state.

- Performance with many components: If you have a high number of components that

need to be aware of state, Redux can help optimize performance by avoiding the

need for prop drilling and unnecessary component re-renders.

- Developer tooling and middleware: Redux has great developer tools that allow

you to track when, where, why, and how your application’s state changed. Redux’s

middleware also allows you to write async logic that interacts with the store.

* On the other hand, for smaller applications, or applications with a simple state,

Redux might be overkill and could add unnecessary complexity to your app. For such

applications, using local component state or React's Context API might be a better

choice.

* As with any tool, it's important to consider the trade-offs and choose the best

tool for your specific needs.

*/

