0 N oy L AW N

U U A DN DN DN DN DN DA DDA DA WWWWWWWWWWNDNRNNDNNDNDDNDNDNNDNDN=S A A A A A
N = O Vv 00 N o8 U1 A WIN =2 O V0V O NOoy U A WIN =2 O VvV o NN A WIN = O V0 0N O U A W N = O Vv

From Python Full Course for Beginners
Programming with Mosh
https://www.youtube.com/watch?v=_uQrJoTkZIc

Math operators: This is an example of using math operators
to calculate a buyer's interest rate on a house if they have
good credit vs bad credit.

house_price = 1000000
has_good_credit = True
good_rate = .10
lesserrate = .20

if has_good_credit:

down_payment = (house_price * good_rate)
else:

down_payment = (house _price * lesser rate)

print(f"Down payment = ${down_payment}.")
08-19-22
CONDITIONS in PYTHON (1:06:41)

If an applicant has high income and good credit, they are eligible
for a loan: LOGICAL AND OPERATOR

has_high_income = True
has_good_credit = True

if has_high_income and has_good_credit: # /f both these are True
print("first AND: Eligible for loan.")

has_high_income = False
has_good_credit = True

if has_high_income and has_good_credit: # Since BOTH are not true,
print("second AND: Eligible for loan.") # will not print eligible.

Use OR operator to have a conditional based on ONE of the conditions

being true.

has_high_income = True

has_good_credit = False

Will only not print if BOTH conditions are false

if has_high_income or has_good_credit: # If one of these is True
print("OR conditional: Eligible for loan.")

AND: Both conditions must be true
OR: At lease one of the conditions must be true

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

NOT: converts boolean value to false
If applicant has good credit and DOES NOT have a criminal recora,
they are eligible for a loan.

has_good_credit = True
has_criminal_record = False
The criminal record part of the conditional will end up returning
#a True since it is True that they do NOT have a criminal record.
if has_good_credit and not has_criminal_record:

print("NOT operator: Eligible for loan.")

COMPARISON OPERATORS: comparing a variable with a value

Expression = piece of code that produces a value

The one below is a boolean expression, because it is based on whether
or not the expression returns True

temperature = 30
if temperature > 30:

print("It is a hot day.")
else:

print("It is not a hot day.")

COMPARISON OPERATORS = <, >, <=, >=, ==, I=

Practice: create a name input field with the requirements that the name

must be at least 3 characters long, or user gets error message as such,

name cannot be more than 50 characters long, or error message as such,
else name looks good.

name = input("Please tell me your name:")

if len(name) > 2 and len(name) < 51:

print(f"Nice name, {name}!")
elif len(name) < 3:

print("Name field must contain at least 3 characters.")
elif len(name) > 50:

print("No name should be that long.")

PROJECT: Weight Conversion

Ask user for weight
Ask user if that weight is in Ibs or kgs: L for Ibs, K for kgs
Convert the weight to the opposite units and return in print statement

Float rather than int due to the operations we need to perform with it.

Could also have done this at the time of input:

float(input("What is your weight? ")

weight = float(input("What is your weight? "))

units = input("ls that in (type | for) pounds or (type k for) kilos? ").lower()

105

106 # convert the input to lower so that no matter which they enter, the program
107 # can figure out what to do.

108 while units not in ('k', 'I'):

109 print("Invalid unit of measurement. Please try again.")

110 units = input("Is that in (type | for) pounds or (type k for) kilos? ").lower()
111 if units == "k":

112 # Inputs are always strings, so we need to convert to float,

113 conversion = (weight) * 2.2

114 print(f"Your converted weight is {conversion:2f} pounds.")

115 elif units =="I":

116 conversion = (weight) * 0.45

117 print(f"Your converted weight is {conversion:.2f} kilos.")

118

1D # oo #

120 # WHILE LOOP: consist of -- while condition: -

121 #As long as the condition is true, the code inside the while loop will be
122 #executed.

123 i=1

124 while i< 5:

125 print("*'* i) # Prints a triangle

126 i+=1
127 print("done!")
128 # #

129 # While loop guessing game (simple version)
130 secret.number =9

131 guess_.count=0

132 guess._limit = 3

133 while guess_count < guess_limit:

134 # We need their guess to be stored as an int
135 user_guess = int(input("Guess a number: "))
136 guess_count += 1

137 if user_ guess == secret_number:

138 print("You win!")

139 # If the user makes the right guess, break out of loop
140 break

141 else:

142 print("Nope! Try again!")

143 else:

144 print("Sorry, no cookie for you!")
145

146 # oo #
147 # CAR GAME:

148

149 answer="

150 # So that we can catch incidents when the car is already started or stopped
151 #and the user tries to start or stop again, we need a boolean variable.

152 carstarted = False

153 # Because we add .lower() after the input in the while loop, it will lower

154 # case the input every time instead of having to type answer.lower() every
155 #time we as if answer = something.

156 while answer = "quit":

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

answer = input("> ").lower()
if answer == "start":
if car_started:
print("Car has already been started. What are you thinking?!")
else:
Start car and set the value of car_started to true
print("You have successfully started the car! VROOM VROOM!!!!")
car_started = True
elif answer == "stop™:
if not car_started:
print("The car is already stopped. There is not much I can do.")
else:
Stop car and set the value of car_started to false
print("You have successfully stopped the car. Car is waiting patiently.")
car started = False

We can print a list of commands for if the user asks for help by putting
a doc-string, multi-line text into the print function:

To avoid to over-indentation you get with a doc-string when printed like
this, you can delete the indentation as shown below. Looks weird here,
but looks much better in the terminal.

elif answer == "help™:
print("""
start - to start the car
stop - to stop the car
quit - to quit the game
")
else:
print("l am sorry, but this car does not understand what you said.")

0 N oy L AW N

G U A& A DN DD ADAMDDADIDWWWWWWWWWWWRNRNRNNNRNDNRNDRNRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-19-22 - Python Tutorial: Python Full Course for Beginners with Mosh
(https://youtu.be/ uQrdoTkZIc) Starting at For Loops (1:41:59)

FOR LOOPS - used to iterate through a collection, like characters in a string,
items in a list, range of numbers,

for item in 'Python":
print(item)
#***************************************#
for item in ['John', 'Sarah’, Jordan', 'Ellen’]:
print(item)
#***************************************#
for number in range(so, 101, 2):
args = start, stop + 1, step
print(number)
#
prices = [10, 20, 30, 40]
total =0
for price in prices:
total += price
print(f"Purchase total = ${total.2f}")

AUGUST 20, 2022
NESTED LOOPS: creating coordinates that change with a nested loop
for x in range(4): # Print multiplies the nest repetitions, incrementing x
for y in range(3): # FPrint multiplies the nest repetitions, incrementing y
print(f" ({x}L,{yN") # So 3 loops for x each time and 2 loops for y

CHALLENGE: Print an F made of Xs
numbers =[5, 2, 5, 2, 2]
for number in numbers:

print('X" * number)

If we could not multiply the printing of X times the number in the list in the loop,
It will require nested loops:

numbers2 =[5, 2, 5, 2, 2]
for number in numbers2:

output =" # We have to construct a string with an inner loop

for count in range(number): # for each number in the list of numbers and then
output += X' # print line for line after each inner loop.

print(output)

numbers_| = [2, 2, 2, 2, 6]
for number in numbers._:
print("X' * number)

#LISTS:

names = ['John', 'Bob', 'Mosh', 'Sarah’, 'Mary'|
A list of 5 items that are all strings.

53

54 # Each can be accessed by index.

55 print(names[3]) # Frints Sarah [3]

56 print(names(2:]) # FPrints Mosh [2] to the end
57 print(names(3][2]) # Frints the r from Sarah [3][2]
58 print(names[:-1]) # Reverses the entire list

59 print(names[1][:-1]) # Prints Bob in reverse
60 print(names[4][:-1]) # Prints Mary in reverse
61

62 # Modifying: Remove h from John

63 names|o] = Jon'

64 print(names) # Prints with new spelling of Jon
65

66 # Write a program to find the largest number in a list
67

68 list.numbers = [s, 2, 7, 11, 56, 23, 7, 99, 23, 12]
69 print(max(list. numbers))

70
71 # Or the long way
72 max=0

73 for number in list_numbers:
74 if number > max:

75 max = number

76 print(max)

77

T8 oo #

79 # Two Dimensional Lists: A list where each item is another list of a specified number
80 # In this way, we can create a matrix:

81
82 matrix = [
83 [1,2,3]
84 [4,5 6]
85 [7,8,9]
86 |

87 print(matrix[o][1]) # PRINTS 2, because it is spot [o][1]
88 # Nested loop to iterate over all items:

89 for row in matrix:

90 for digit in row:

91 print(digit) # PRINTS all numbers, one per line

92

93 A o #

94 # LIST FUNCTIONS: Functions that can be performed on lists
95

96 some_numbers =[5, 2, 1, 7, 4]

97 some_numbers.append(20) # <- adds to end of list

98 print(some_numbers) # PRINTS: [5, 2, 1, 7, 4, 20]

99
100 # HINT: When you type in a method to use and open parentheses, there is a hint or tip
101 # that pops up above your cursor to show you what arguments that method takes.
102
103 some_numbers.insert(3, 23) # <-insert gets two values, the index and the object to insert
104 print(some_numbers) # Now prints: [5, 2, 1, 23, 7, 4, 20]

105
106 some_numbers.remove(s) # Removes the object you pass to it from the list

107 print(some_numbers) # PRINTS: [2, 1, 23, 7, 4, 20]
108
109 # some_numbers.clear() # This does not take any arguments

110 # print(some_numbers) # PRINTS: []
111

112 some_numbers.pop() # Removes the last item from the list

113 print(some_numbers) # PRINTS: [2, 1, 23, 7, 4]

114

115 print(some_numbers.index(23)) # This retumns the index of the first occurrence
116 # " PRINTS: 2 # of the object passed to it.

117 #If you check for the an item that is not in the list, you will get a ValueError

118

119 # You can also check for the existence of something in a list by using the IN
120 # operator, and it does not cause an error:

121

122 print(s0 in some numbers) # <- PRINTS: False, because it is not there.

123

124 # We can also get the number of occurrences of an object in a list by passing to count.
125 # First we must add multiple occurrences to our list:

126 some_numbers.append(23)

127 some_numbers.append(7)

128 print(some_numbers.count(23)) # <- PRINTS: 2

129

130 # We can sort the list, but it will not return any values. The print statement below
131 #returns None. It just sorts the list in place. Ascending by default.

132 print(some_numbers.sort())

133

134 # Instead, you can call it to sort the list, and then print the list:

135 some_numbers.sort()

136 print(some_numbers) # <- PRINTS: [1, 2,4, 7, 7, 23, 23]

137

138 some_numbers.reverse() # 7o reverse items in a list, descending order.

139 print(some_numbers) # <- PRINTS [23, 23,7, 7,4, 2, 1]

140

141 othernnumbers = some_numbers.copy() # < This will be a copy of some numbers
142 other.numbers.append(22)

143 print(other.numbers, some_numbers)

144 # PRINTS: [23, 23,7, 7,4, 2,1, 22] [23,23,7,7, 4,2, 1]

145 # Both lists, but only other.numbers, printed first, has had 22 appended to the end
146

147 # CHALLENGE: Write a program to remove duplicates in a list:

148 some_numbers = list(set(some_numbers))

149 print(some_numbers) # <- Prints: [1, 2, 4, 7, 23] (Duplicates have been removed.)
150

151 # LONGER WAY:

152 uniques = ||

153 for i in other_numbers:

154 if i not in uniques:

155 uniques.append()

156 print(uniques) # <- PRINTS: [23, 7, 4, 2, 1, 22] as a new list w/ new name

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

TUPLES: similar to lists and can store items, but cannot be modified
They are immutable. You can only get information about them.

numtuple = (1, 2,3) # Only has two methods, count to get the count of an item

and index to get the first occurrence of an item.
print(num_tuple[1]) # <- PRINTS: 2
Tuples are useful when you want a list you can be sure you will not accidentally
modify.

UNPACKING

coordinates = (1, 2, 3)

Variables can be assigned to items from a tuple one at a time:

x = coordinates|[o]

y = coordinates|[1]

z = coordinates|2]

But they can also be unpacked:

X, Yy, z = coordinates # This is identical to the three lines of code above.
print(x, y, z) #<-PRINTS: 123

UNPACKING also works with LISTS!

0 N o L AW

G U A& A DN DD ADAMDDADIDWWWWWWWWWWWRNRNRNNNRNDNRNDRNRNNS A o a4 a4 a4 a4
N = O 0 © N o U h WN = O 0o NOU KA WNN =2 0O 0O NN WN= O VOoONO U A WN = OO

08-20-22 - Python Tutorial: Python Full Course for Beginners with Mosh
(https://youtu.be/ uQrdoTkZIc) Starting at DICTIONARIES (2:18:32)

DICTIONARIES: Used to store information you want to keep in key-value pairs.

Example: You have a customer named John Smith with many different attributes:
Name: John Smith Key is name, value is John Smith

Email: JohnSmith@gmail.com Key is email.. and so on

Phone: 123-456-7890

customer = {
'name"; 'John Smith’,
'‘age": 30,
'email": JohnSmith@gmail.com’,
'phone" '123-456-7890',
'verified" 'yes'

}

Each key in a dictionary must be unique
Values can be anything: string, number, boolean, list, etc.
Now, each item in the dictionary can be accessed by key with []

print(customer['name']) # This is the same as typing "John Smith"
If you try to pass a key that does not exist, you will get a key error.
Keys are also case-sensitive.

You can also use the get method for dictionaries:

And if you want to use a key/value that is not already in the dictionary, you can do

s0 and supply a default value at the same time.

print(customer.get('name’))

print(customer.get('birthday', "Jan 1, 1980")) # Does not add this to dictionary, however.

UPDATING:

customer['name’] = "Jack Smith"

customer['birthday'] = "Jan 1, 1980"

print(customer['name'], customer('birthday']) # <- Now, John is Jack, and the dictionary
""" PRINTS: Jack Smith Jan 1, 1980 contains his birthday.

CHALLENGE: Write a program that takes a phone number and prints it out in words
phone = input("Phone: ")

for index, number in enumerate(phone):

p_num = {

"0": 'zero ",
"1":'one ",
"2": 'two ',
"3" 'three ',
"4": 'four ',
"5": 'five ',
"6": 'six ",
"7": 'seven '

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

"8": 'eight ',
"9": 'nine '

}

word_num ="
for indy, i in enumerate(phone):
word_num += p_num.get(phone[indy], "!")

print(word_num)

Emoji Converter:

message = input("Type a message > ")
words = message.split(" ")

emoijis = {
ll:)": n n
":(": n n
":lll: n n
e

LNTCAUI
"xXxp":" "
}
message_back ="
for word in words:
If the word that the user types (the emoji but in characters)
#is in our emoji dictionary and has a corresponding emoji face
for that word, we will return it here, otherwise, we will use
whatever characters the user typed, i.e. the word.
The first word here supplies the key to the dictionary, and the
second tells the program what to put if match not found in keys.
message_back += emojis.get(word, word) + " "
print(message_back)

FUNCTIONS: a reusable container for a few lines of code that perform a specific task
Create a function to greet a user.

When we write a line that ends in a colon, it means that what follows will be a block

of code that belongs to the part before the colon.

Code that is indented inside a function will ONLY execute when the function is called.

def greet_user():
print("Hi there!")
print("Welcome aboard!")

print("Start")
greet_user()

105
106
107
108
109
110
111
112
113
114
115
116

117

118
119
120
121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

print("Finish")

PARAMETERS: How to pass information to functions

def greet_user2(first.name, last.name):
print(f"Hi {first_name} {last.name}!")
print("Welcome aboard!")

print("Start")

greet_user2("John", "Smith") # <- Here, we are passing the NAME John to our function as
a parameter

greet.user2("Lola", "Johnson") # <- This time, we call the function but with the variable
Lola

print("Finish")

When a function has a parameter, we are obligated to pass a value for that parameter.

If we try to run the above function calls with no name in the parentheses as a

parameter, we will get an TypeError message that we needed to pass a parameter but

did not.

PARAMETER: The holes or placeholders we define in our function for receiving information.
ARGUMENT: The actual information that we supply to the function, to the hole.

POSITIONAL ARGUMENTS: Above, the first name and last name arguments passed to the
function

are positional arguments, meaning their position matters. The spot that they are when
passed

to the function will correlate to the parameters as passed to the function in its definition.

KEYWORD ARGUMENTS: position does not matter for these. If we

def greet_again(first, last):
print(f"Howdy, {first} {last}!")

Here | have set the parameter FIRST to be John. Now, the position does not matter.

The names have now been turned into a keyword argument.

greet_again(last = "Smith", first = "John")

Most of the time, we will use positional arguments, but sometimes keyword arguments

make code more READABLE, for example when using numbers, when it can be confusing

as to which parameter different integers are targeting.

Keyword arguments must always come AFTER positional arguments, if mixing the two.

Return Statement: Functions that return values

def square(to_square):

153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

return to_square ** 2
print(square(3))

If we merely print the result inside of the function rather than returning it and then

printing, the Python interpreter will return None. By default, functions return None unless

they are given a return statement telling them what to return. So None would be passed to
the

print statement on line 155.

08-21-22 Creating a Reusable Function (https;//youtu.be/ uQrdoTkZIc @ 2:49:07)
Turn the previous emoji project into its own function

def emojify(message2):
words = message2.split(" ")

emoijis = {
":)ll: n n
":(ll: n n
":lll: n n
A
e
>t
"Xp"." "

J

message_back2 ="

for word in words:
message_back2 += emojis.get(word, word) +

return message_back2

message?2 = input("Type a message > ")
print("Emojified Message =", emojify(message2))

1 e #
2 #08-21-22 EXCEPTIONS / TRY EXCEPT (https://youtu.be/ uQrJoTkZIc @ 2:53:54)
3 #An exception is an error that crashes a program
4 # How to handle errors
5
6 age = int(input("Age: "))
7 print(age)
8
9 # We have told the program that the age input must be an int, but if a user inputs anything
10 # otherthan an int, they will get a ValueError code.
11
12 # TRY EXCEPT: used to avoid errors
13 # On except, add the kind of error that is most likely with this particular bit of code.
14
15 # This tells the program that if it runs into an error during the try block code
16 #that is of type ValueError, instead of giving the user the ValueError text, instead
17 # give them the printed message input in the except block.
18
19 #In the code below, we could also get a ZeroDivisionError, if the user inputs 0
20 # for their age and the program tries to use that for the line 18 operation.
21
22 try:
23 age_try = int(input("Age: "))
24 income = 20000
25 risk = income [age_try
26 print(age_try)
27
28 except ZeroDivisionError:
29 print("Age cannot be 0.")
30
31 except ValueError:
32 print("Invalid Value. Age must be a number.")
33
34
3D A e #
36 # COMMENTS: Do not use comments to tell WHAT your code does, but rather whys and hows

or other
37 #information that other developers would need to know about your code.
38 # Otherwise, verbose comments make code messy and redundant.
39
A0 # o #
41 # CLASSES: used to define new types of information
42 # Basic classes in Python include: numbers, strings, booleans
43 # Complex types of classes: Lists, dictionaries
44 # Use classes to define new types that model real concepits.
45
46 # New type: Point - with concepts and operations to work with and perform on points.
47 # Naming classes - capitalize the first letter of every word (Pascal Naming Convention)
48
49 class Point:
50 # Within the class - Define all the methods that belong to the class
51 def move(self):

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

print("move")
def draw(self):
print("draw")

CLASS = defines the blueprint or the template for creating objects
OBJECT = instance of a class based on the blueprint
To create a new object, call on the class

point1 = Point()

ATTRIBUTES: variables that belong to a particular object.
point1.x = 10

point1.y = 20

point1.draw()

print(point1.x)

point2 = Point()

point2.x = 1
print(point2.x)
B et eeee s e #

CONSTRUCTORS: A function that gets called at the time of creating an object of a class.
In the above example, within our class Point, we did not originally create

the attributes of x and y, which would always be an attribute of any point in space.

Our constructor for our class attributes is the _init_ function

class Point2:
Defining the constructor, _init_, we pass it the parameters that it will be using whenever
it is called.
def _init_(self, x, y):
To initialize our object with these parameters, we have to initialize each parameter.
Self here is a reference to the current object, then the argument follow is how we
set up and initialize each for each object we create. -> self.attribute = argument
This sets the value on the right of the = to be the attribute value for the object
we are creating

selfx = x
selfy =y

def move(self):
print("move")

def draw(self):
print("draw")

Now that we have created our constructor which includes how to assign x and y to each
object

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

of the class that is created, we can create an object in that class and easily assign those
values by passing them upon creation.

point3 = Point2(10, 20)
print(point3.x)

We can also change these values later:
point3.x = 11
print(point3.x)

CHALLENGE: Create a person class with a name attribute and a talk() method

class Person:
def _init_(self, name):
self.name = name

def talk(self):
person.name will return the name attribute of the current object.
print(f"Hi, I am {self.name}!")

john = Person("John Smith")
john.talk()
bob = Person("Bob Bluebie")
bob.talk()

INHERITANCE: A mechanism for reusing code.

Suppose we have a class Dog that has the method walk, but we also want to create a class
Cat

that will also have the method walk. We would have to repeat all the same code for defining
the walk method under each class: dog, cat, and whatever other mammal we create.

DO NOT REPEAT YOURSELF - DRY - cuz they all like to talk about this.

If we create the same method inside of multiple classes, then if there ever needs to be

a change to that method, it must be changed in every class where it appears, but..

If we use INHERITANCE, we can create a parent class with multiple children that can
inherit methods and attributes from the parent class.

class Mammal:
def walk(self):
print("Walk, animal!")

class Dog(Mammal): # <- This is how we assign a class to a parent class so it can inherit
def bark(self): # <- We can also define methods specific to child classes
print('l am a dog. | go WOOF!")

class Cat(Mammal):

154
155
156
157
158
159
160
161
162
163
164

def be_annoying(self):
print("l am a cat. | am being annoying!")

dog1 = Dog()
dog1.walk()
dog1.bark()

cat1 = Cat()
cat1.be_annoying()

0 N oy L AW N

W NN DNDNNDNDNDNDNDDNDNDDNDN=2 2 a4 A 2O O a4 A
O V0V 0 N 08 LT A W N =2 O V0V © N oy 1 A W N = O v

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

08-21-22 MODULES (https;//youtu.be/ uQrJoTkZIc @ 3:19:48)
Modules are files with Python code. We use them to organize our code into multiple files,
just like the fruits, vegetables, and other sections in a supermarket.

We refer to each file as a module (REFER TO CONVERTER_MODULES.PY for this section)
As we write more functions and classes, we put them in the module(file) to which they belong,
organizing each by the fact that they relate to each other or work together.

import utils

The module file is an object, so we can use . operator to access its members and call
those functions:

print(utils.lbs_to_kgs(70)) # PRINTS: 31.5

Instead of importing the entire module, you can also import a single function from inside
the module:

from utils import lbs_to_kgs
By importing this way, we do not have to prefix with the module(file) name.

print(lbs_to_kgs(30)) # PRINTS: 13.5

CHALLENGE: create a function in utils.py called find_max that takes a list and
returns the largest number from the list.

from utils import find_max

listo1 = [4, 6, 12, 67, 3, 44, 13, 55]

print(find_max(listo1))

PACKAGES: Big projects can contain hundreds or thousands of modules or files. Related
modules
can be organized inside of packages, containers for multiple files, a directory or folder.

Imagine it like a department store that has different sections: Men's, Women's, Children’s,

and within those sections are subsections for various clothing types, etc.

The Men's section could be seen as a package, and the outerwear section within the Men's
section could be seen as a module.

To create a package:

1) Create a new directory inside of your project with a descriptive name for the package.
#2) Add a Python file called _init_ to the package directory. (Tells Python this is a package.)
The files for this demonstration are in directory: package, module: shipping

To import modules from a package, you have to give name of package . name of module.

import package.shipping

This is a lot to type.
package.shipping.calc_shipping()

So we can import like this:
from package.shipping import calc_shipping as ship

52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

ship()

Or you can import the entire module, shorten its name and use the dot operator for
individual
functions within the module such as shipping.calc_shipping

PYTHON'S BUILT-IN MODULES: Python's documentation lists and explains all the built-in
modules available. Mosh is gonna talk about the module random

import random
for i in range(3):
print(random.random()) # <- by default, generates a random number between 0 and 1

PRINTS:

0.8004578459479664

0.057541098205425745
#0.7747335751454704

for iin range(3):
print(random.randint(10, 20)) # <- randint gives integers, and the arguments are the range

team = ['John', 'Heather', 'Mary"', 'Bob’, 'Bill', 'Scooter', 'Bart’, 'Chester’, 'Louise']

leader = random.choice(team) # <- Makes a random choice from a list passed to It.
print(leader)

CHALLENGE: Make a dice roll program
Define a class called DICE with a method called ROLL that returns a tuple with two random
ints.

class Dice:
def roli(self):
x = random.randint(1, ¢)
y = random.randint(1, 6)
rollresult = (x, y)

return roll_result

dice = Dice()
print(dice.roll())

FILES and DIRECTORIES:
Pathlib - library you can use to create objects to work with directories and files.
from pathlib import Path

Absolute Path = start from root of hard disk to the directory going to the file
Relative Path = starting from the current directory going to the file

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

path = Path("package")
print(path.exists()) # <- Checks that the path is correct and exists.

If you have set path = Path() and left out any other diretory, it will assume you mean
the one you are in.

MKDIR = to make a new directory (whatever directory path has been set to)
RMDIR = to delete a directory (whatever directory path has been set to)

GLOB = If you want to open all the files and directories in a path. Very useful if
you are working on a program that opens a lot of files from other places.

To get all the files (but not directories) in a given path/directory, use path.glob("**)
To get files of a certain type: path.glob(* py') (for example, Python files). You will
get a generator object, which you can loop through

for file in path.glob(".py"):
print(file)
PyPi and Pip: Python Package Index (Pip is how you open packages from PyPi)

PyPi - tons of packages available. Some are not complete or contain bugs though

WEB-SCRAPING - there are packages to help with this.
Selenium - package for automating web app testing

