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# From Python Full Course for Beginners
# Programming with Mosh
# https://www.youtube.com/watch?v=_uQrJoTkZIc

# Math operators: This is an example of using math operators
# to calculate a buyer's interest rate on a house if they have
# good credit vs bad credit.

house_price = 1000000
has_good_credit = True
good_rate = .10
lesserrate = .20

if has_good_credit:

down_payment = (house_price * good_rate)
else:

down_payment = (house _price * lesser rate)

print(f"Down payment = ${down_payment}.")
# 08-19-22
# CONDITIONS in PYTHON (1:06:41)

# If an applicant has high income and good credit, they are eligible
# for a loan: LOGICAL AND OPERATOR

has_high_income = True
has_good_credit = True

if has_high_income and has_good_credit: # /f both these are True
print("first AND: Eligible for loan.")

has_high_income = False
has_good_credit = True

if has_high_income and has_good_credit: # Since BOTH are not true,
print("second AND: Eligible for loan.") # will not print eligible.

# Use OR operator to have a conditional based on ONE of the conditions

# being true.

has_high_income = True

has_good_credit = False

# Will only not print if BOTH conditions are false

if has_high_income or has_good_credit: # If one of these is True
print("OR conditional: Eligible for loan.")

# AND: Both conditions must be true
# OR: At lease one of the conditions must be true
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# NOT: converts boolean value to false
# If applicant has good credit and DOES NOT have a criminal recora,
# they are eligible for a loan.

has_good_credit = True
has_criminal_record = False
# The criminal record part of the conditional will end up returning
#a True since it is True that they do NOT have a criminal record.
if has_good_credit and not has_criminal_record:

print("NOT operator: Eligible for loan.")

# COMPARISON OPERATORS: comparing a variable with a value

# Expression = piece of code that produces a value

# The one below is a boolean expression, because it is based on whether
# or not the expression returns True

temperature = 30
if temperature > 30:

print("It is a hot day.")
else:

print("It is not a hot day.")

# COMPARISON OPERATORS = <, >, <=, >=, ==, I=

# Practice: create a name input field with the requirements that the name

# must be at least 3 characters long, or user gets error message as such,

# name cannot be more than 50 characters long, or error message as such,
# else name looks good.

name = input("Please tell me your name:")

if len(name) > 2 and len(name) < 51:

print(f"Nice name, {name}!")
elif len(name) < 3:

print("Name field must contain at least 3 characters.")
elif len(name) > 50:

print("No name should be that long.")

# PROJECT: Weight Conversion

# Ask user for weight
# Ask user if that weight is in Ibs or kgs: L for Ibs, K for kgs
# Convert the weight to the opposite units and return in print statement

# Float rather than int due to the operations we need to perform with it.

# Could also have done this at the time of input:

# float(input("What is your weight? ")

weight = float(input("What is your weight? "))

units = input("ls that in (type | for) pounds or (type k for) kilos? ").lower()
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106 # convert the input to lower so that no matter which they enter, the program
107 # can figure out what to do.

108 while units not in ('k', 'I'):

109 print("Invalid unit of measurement. Please try again.")

110 units = input("Is that in (type | for) pounds or (type k for) kilos? ").lower()
111 if units == "k":

112 # Inputs are always strings, so we need to convert to float,

113 conversion = (weight) * 2.2

114 print(f"Your converted weight is {conversion:2f} pounds.")

115 elif units =="I":

116  conversion = (weight) * 0.45

117 print(f"Your converted weight is {conversion:.2f} kilos.")

118

1D # oo #

120 # WHILE LOOP: consist of -- while condition: -

121 #As long as the condition is true, the code inside the while loop will be
122 #executed.

123 i=1

124 while i< 5:

125 print("*'* i) # Prints a triangle

126  i+=1
127 print("done!")
128 # #

129 # While loop guessing game (simple version)
130 secret.number =9

131 guess_.count=0

132 guess._limit = 3

133 while guess_count < guess_limit:

134 # We need their guess to be stored as an int
135 user_guess = int(input("Guess a number: "))
136 guess_count += 1

137 if user_ guess == secret_number:

138 print("You win!")

139 # If the user makes the right guess, break out of loop
140 break

141 else:

142 print("Nope! Try again!")

143 else:

144 print("Sorry, no cookie for you!")
145

146 # oo #
147 # CAR GAME:

148

149 answer="

150 # So that we can catch incidents when the car is already started or stopped
151 #and the user tries to start or stop again, we need a boolean variable.

152 carstarted = False

153 # Because we add .lower() after the input in the while loop, it will lower

154 # case the input every time instead of having to type answer.lower() every
155 #time we as if answer = something.

156 while answer = "quit":
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answer = input("> ").lower()
if answer == "start":
if car_started:
print("Car has already been started. What are you thinking?!")
else:
# Start car and set the value of car_started to true
print("You have successfully started the car! VROOM VROOM!!!!")
car_started = True
elif answer == "stop™:
if not car_started:
print("The car is already stopped. There is not much I can do.")
else:
# Stop car and set the value of car_started to false
print("You have successfully stopped the car. Car is waiting patiently.")
car started = False

# We can print a list of commands for if the user asks for help by putting
# a doc-string, multi-line text into the print function:

# To avoid to over-indentation you get with a doc-string when printed like
# this, you can delete the indentation as shown below. Looks weird here,
# but looks much better in the terminal.

elif answer == "help™:
print("""
start - to start the car
stop - to stop the car
quit - to quit the game
")
else:
print("l am sorry, but this car does not understand what you said.")
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# 08-19-22 - Python Tutorial: Python Full Course for Beginners with Mosh
# (https://youtu.be/ uQrdoTkZIc) Starting at For Loops (1:41:59)

# FOR LOOPS - used to iterate through a collection, like characters in a string,
# items in a list, range of numbers,

for item in 'Python":
print(item)
#***************************************#
for item in ['John', 'Sarah’, Jordan', 'Ellen’]:
print(item)
#***************************************#
for number in range(so, 101, 2):
# args = start, stop + 1, step
print(number)
# #
prices = [10, 20, 30, 40]
total =0
for price in prices:
total += price
print(f"Purchase total = ${total.2f}")

# AUGUST 20, 2022
# NESTED LOOPS: creating coordinates that change with a nested loop
for x in range(4): # Print multiplies the nest repetitions, incrementing x
for y in range(3): # FPrint multiplies the nest repetitions, incrementing y
print(f" ({x}L,{yN") # So 3 loops for x each time and 2 loops for y

# CHALLENGE: Print an F made of Xs
numbers =[5, 2, 5, 2, 2]
for number in numbers:

print('X" * number)

# If we could not multiply the printing of X times the number in the list in the loop,
# It will require nested loops:

numbers2 =[5, 2, 5, 2, 2]
for number in numbers2:

output =" # We have to construct a string with an inner loop

for count in range(number): # for each number in the list of numbers and then
output += X' # print line for line after each inner loop.

print(output)

numbers_| = [2, 2, 2, 2, 6]
for number in numbers._:
print("X' * number)

#LISTS:

names = ['John', 'Bob', 'Mosh', 'Sarah’, 'Mary'|
# A list of 5 items that are all strings.
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54 # Each can be accessed by index.

55 print(names[3])  # Frints Sarah [3]

56 print(names(2:])  # FPrints Mosh [2] to the end
57 print(names(3][2]) # Frints the r from Sarah [3][2]
58 print(names[:-1]) # Reverses the entire list

59 print(names[1][:-1]) # Prints Bob in reverse
60 print(names[4][:-1]) # Prints Mary in reverse
61

62 # Modifying: Remove h from John

63 names|o] = Jon'

64 print(names) # Prints with new spelling of Jon
65

66 # Write a program to find the largest number in a list
67

68 list.numbers = [s, 2, 7, 11, 56, 23, 7, 99, 23, 12]
69 print(max(list. numbers))

70
71 # Or the long way
72 max=0

73 for number in list_numbers:
74 if number > max:

75 max = number

76 print(max)

77

T8 oo #

79 # Two Dimensional Lists: A list where each item is another list of a specified number
80 # In this way, we can create a matrix:

81
82 matrix = [
83 [1,2,3]
84  [4,5 6]
85 [7,8,9]
86 |

87 print(matrix[o][1]) # PRINTS 2, because it is spot [o][1]
88 # Nested loop to iterate over all items:

89 for row in matrix:

90  for digit in row:

91 print(digit) # PRINTS all numbers, one per line

92

93 A o #

94 # LIST FUNCTIONS: Functions that can be performed on lists
95

96 some_numbers =[5, 2, 1, 7, 4]

97 some_numbers.append(20)  # <- adds to end of list

98 print(some_numbers) # PRINTS: [5, 2, 1, 7, 4, 20]

99
100 # HINT: When you type in a method to use and open parentheses, there is a hint or tip
101 # that pops up above your cursor to show you what arguments that method takes.
102
103 some_numbers.insert(3, 23) # <-insert gets two values, the index and the object to insert
104 print(some_numbers) # Now prints: [5, 2, 1, 23, 7, 4, 20]
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106 some_numbers.remove(s) # Removes the object you pass to it from the list

107 print(some_numbers) # PRINTS: [2, 1, 23, 7, 4, 20]
108
109 # some_numbers.clear() # This does not take any arguments

110 # print(some_numbers) # PRINTS: []
111

112 some_numbers.pop() # Removes the last item from the list

113 print(some_numbers) # PRINTS: [2, 1, 23, 7, 4]

114

115 print(some_numbers.index(23)) # This retumns the index of the first occurrence
116 # " PRINTS: 2 # of the object passed to it.

117 #If you check for the an item that is not in the list, you will get a ValueError

118

119 # You can also check for the existence of something in a list by using the IN
120 # operator, and it does not cause an error:

121

122 print(s0 in some numbers)  # <- PRINTS: False, because it is not there.

123

124 # We can also get the number of occurrences of an object in a list by passing to count.
125 # First we must add multiple occurrences to our list:

126 some_numbers.append(23)

127 some_numbers.append(7)

128 print(some_numbers.count(23)) # <- PRINTS: 2

129

130 # We can sort the list, but it will not return any values. The print statement below
131 #returns None. It just sorts the list in place. Ascending by default.

132 print(some_numbers.sort())

133

134 # Instead, you can call it to sort the list, and then print the list:

135 some_numbers.sort()

136 print(some_numbers)  # <- PRINTS: [1, 2,4, 7, 7, 23, 23]

137

138 some_numbers.reverse() # 7o reverse items in a list, descending order.

139 print(some_numbers)  # <- PRINTS [23, 23,7, 7,4, 2, 1]

140

141 othernnumbers = some_numbers.copy()  # < This will be a copy of some numbers
142 other.numbers.append(22)

143 print(other.numbers, some_numbers)

144 # PRINTS: [23, 23,7, 7,4, 2,1, 22] [23,23,7,7, 4,2, 1]

145 # Both lists, but only other.numbers, printed first, has had 22 appended to the end
146

147 # CHALLENGE: Write a program to remove duplicates in a list:

148 some_numbers = list(set(some_numbers))

149 print(some_numbers) # <- Prints: [1, 2, 4, 7, 23] (Duplicates have been removed.)
150

151 # LONGER WAY:

152 uniques = ||

153 for i in other_numbers:

154 if i not in uniques:

155 uniques.append()

156 print(uniques) # <- PRINTS: [23, 7, 4, 2, 1, 22] as a new list w/ new name
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# TUPLES: similar to lists and can store items, but cannot be modified
# They are immutable. You can only get information about them.

numtuple = (1, 2,3) # Only has two methods, count to get the count of an item

# and index to get the first occurrence of an item.
print(num_tuple[1])  # <- PRINTS: 2
# Tuples are useful when you want a list you can be sure you will not accidentally
# modify.

# UNPACKING

coordinates = (1, 2, 3)

# Variables can be assigned to items from a tuple one at a time:

x = coordinates|[o]

y = coordinates|[1]

z = coordinates|2]

# But they can also be unpacked:

X, Yy, z = coordinates # This is identical to the three lines of code above.
print(x, y, z) #<-PRINTS: 123

# UNPACKING also works with LISTS!
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# 08-20-22 - Python Tutorial: Python Full Course for Beginners with Mosh
# (https://youtu.be/ uQrdoTkZIc) Starting at DICTIONARIES (2:18:32)

# DICTIONARIES: Used to store information you want to keep in key-value pairs.

# Example: You have a customer named John Smith with many different attributes:
# Name: John Smith Key is name, value is John Smith

# Email: JohnSmith@gmail.com Key is email.. and so on

# Phone: 123-456-7890

customer = {
'name"; 'John Smith’,
'‘age": 30,
'email": JohnSmith@gmail.com’,
'phone" '123-456-7890',
'verified" 'yes'

}

# Each key in a dictionary must be unique
# Values can be anything: string, number, boolean, list, etc.
# Now, each item in the dictionary can be accessed by key with []

print(customer['name']) # This is the same as typing "John Smith"
# If you try to pass a key that does not exist, you will get a key error.
# Keys are also case-sensitive.

# You can also use the get method for dictionaries:

# And if you want to use a key/value that is not already in the dictionary, you can do

# s0 and supply a default value at the same time.

print(customer.get('name’))

print(customer.get('birthday', "Jan 1, 1980")) # Does not add this to dictionary, however.

# UPDATING:

customer['name’] = "Jack Smith"

customer['birthday'] = "Jan 1, 1980"

print(customer['name'], customer('birthday']) # <- Now, John is Jack, and the dictionary
# """ PRINTS: Jack Smith Jan 1, 1980 contains his birthday.

# CHALLENGE: Write a program that takes a phone number and prints it out in words
phone = input("Phone: ")

for index, number in enumerate(phone):

p_num = {

"0": 'zero ",
"1":'one ",
"2": 'two ',
"3" 'three ',
"4": 'four ',
"5": 'five ',
"6": 'six ",
"7": 'seven '



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

"8": 'eight ',
"9": 'nine '

}

word_num ="
for indy, i in enumerate(phone):
word_num += p_num.get(phone[indy], "!")

print(word_num)

# Emoji Converter:

message = input("Type a message > ")
words = message.split(" ")

emoijis = {
ll:)": n n
":(": n n
":lll: n n
e

LNTCAUI
"xXxp":" "
}
message_back ="
for word in words:
# If the word that the user types (the emoji but in characters)
#is in our emoji dictionary and has a corresponding emoji face
# for that word, we will return it here, otherwise, we will use
# whatever characters the user typed, i.e. the word.
# The first word here supplies the key to the dictionary, and the
# second tells the program what to put if match not found in keys.
message_back += emojis.get(word, word) + " "
print(message_back)

# FUNCTIONS: a reusable container for a few lines of code that perform a specific task
# Create a function to greet a user.

# When we write a line that ends in a colon, it means that what follows will be a block

# of code that belongs to the part before the colon.

# Code that is indented inside a function will ONLY execute when the function is called.

def greet_user():
print("Hi there!")
print("Welcome aboard!")

print("Start")
greet_user()
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print("Finish")

# PARAMETERS: How to pass information to functions

def greet_user2(first.name, last.name):
print(f"Hi {first_name} {last.name}!")
print("Welcome aboard!")

print("Start")

greet_user2("John", "Smith")  # <- Here, we are passing the NAME John to our function as
a parameter

greet.user2("Lola", "Johnson")  # <- This time, we call the function but with the variable
Lola

print("Finish")

# When a function has a parameter, we are obligated to pass a value for that parameter.

# If we try to run the above function calls with no name in the parentheses as a

# parameter, we will get an TypeError message that we needed to pass a parameter but

# did not.

# PARAMETER: The holes or placeholders we define in our function for receiving information.
# ARGUMENT: The actual information that we supply to the function, to the hole.

# POSITIONAL ARGUMENTS: Above, the first name and last name arguments passed to the
function

# are positional arguments, meaning their position matters. The spot that they are when
passed

# to the function will correlate to the parameters as passed to the function in its definition.

# KEYWORD ARGUMENTS: position does not matter for these. If we

def greet_again(first, last):
print(f"Howdy, {first} {last}!")

# Here | have set the parameter FIRST to be John. Now, the position does not matter.

# The names have now been turned into a keyword argument.

greet_again(last = "Smith", first = "John")

# Most of the time, we will use positional arguments, but sometimes keyword arguments

# make code more READABLE, for example when using numbers, when it can be confusing

# as to which parameter different integers are targeting.

# Keyword arguments must always come AFTER positional arguments, if mixing the two.

# Return Statement: Functions that return values

def square(to_square):
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return to_square ** 2
print(square(3))

# If we merely print the result inside of the function rather than returning it and then

# printing, the Python interpreter will return None. By default, functions return None unless

# they are given a return statement telling them what to return. So None would be passed to
the

# print statement on line 155.

# 08-21-22 Creating a Reusable Function (https;//youtu.be/ uQrdoTkZIc @ 2:49:07)
# Turn the previous emoji project into its own function

def emojify(message2):
words = message2.split(" ")

emoijis = {
":)ll: n n
":(ll: n n
":lll: n n
A
e
>t
"Xp"." "

J

message_back2 ="

for word in words:
message_back2 += emojis.get(word, word) +

return message_back2

message?2 = input("Type a message > ")
print("Emojified Message =", emojify(message2))



1 e #
2 #08-21-22 EXCEPTIONS / TRY EXCEPT (https://youtu.be/ uQrJoTkZIc @ 2:53:54)
3 #An exception is an error that crashes a program
4 # How to handle errors
5
6 age = int(input("Age: "))
7 print(age)
8
9 # We have told the program that the age input must be an int, but if a user inputs anything
10 # otherthan an int, they will get a ValueError code.
11
12 # TRY EXCEPT: used to avoid errors
13 # On except, add the kind of error that is most likely with this particular bit of code.
14
15 # This tells the program that if it runs into an error during the try block code
16 #that is of type ValueError, instead of giving the user the ValueError text, instead
17 # give them the printed message input in the except block.
18
19 #In the code below, we could also get a ZeroDivisionError, if the user inputs 0
20 # for their age and the program tries to use that for the line 18 operation.
21
22 try:
23 age_try = int(input("Age: "))
24 income = 20000
25 risk = income [ age_try
26  print(age_try)
27
28 except ZeroDivisionError:
29 print("Age cannot be 0.")
30
31 except ValueError:
32 print("Invalid Value. Age must be a number.")
33
34
3D A e #
36 # COMMENTS: Do not use comments to tell WHAT your code does, but rather whys and hows

or other
37 #information that other developers would need to know about your code.
38 # Otherwise, verbose comments make code messy and redundant.
39
A0 # o #
41 # CLASSES: used to define new types of information
42 # Basic classes in Python include: numbers, strings, booleans
43 # Complex types of classes: Lists, dictionaries
44 # Use classes to define new types that model real concepits.
45
46 # New type: Point - with concepts and operations to work with and perform on points.
47 # Naming classes - capitalize the first letter of every word (Pascal Naming Convention)
48
49 class Point:
50 # Within the class - Define all the methods that belong to the class
51 def move(self):



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

print("move")
def draw(self):
print("draw")

# CLASS = defines the blueprint or the template for creating objects
# OBJECT = instance of a class based on the blueprint
# To create a new object, call on the class

point1 = Point()

# ATTRIBUTES: variables that belong to a particular object.
point1.x = 10

point1.y = 20

point1.draw()

print(point1.x)

point2 = Point()

point2.x = 1
print(point2.x)
B et eeee s e #

# CONSTRUCTORS: A function that gets called at the time of creating an object of a class.
# In the above example, within our class Point, we did not originally create

# the attributes of x and y, which would always be an attribute of any point in space.

# Our constructor for our class attributes is the _init_ function

class Point2:
# Defining the constructor, _init_, we pass it the parameters that it will be using whenever
# it is called.
def _init_(self, x, y):
# To initialize our object with these parameters, we have to initialize each parameter.
# Self here is a reference to the current object, then the argument follow is how we
# set up and initialize each for each object we create. -> self.attribute = argument
# This sets the value on the right of the = to be the attribute value for the object
# we are creating

selfx = x
selfy =y

def move(self):
print("move")

def draw(self):
print("draw")

# Now that we have created our constructor which includes how to assign x and y to each
object
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# of the class that is created, we can create an object in that class and easily assign those
# values by passing them upon creation.

point3 = Point2(10, 20)
print(point3.x)

# We can also change these values later:
point3.x = 11
print(point3.x)

# CHALLENGE: Create a person class with a name attribute and a talk() method

class Person:
def _init_(self, name):
self.name = name

def talk(self):
# person.name will return the name attribute of the current object.
print(f"Hi, I am {self.name}!")

john = Person("John Smith")
john.talk()
bob = Person("Bob Bluebie")
bob.talk()

# INHERITANCE: A mechanism for reusing code.

# Suppose we have a class Dog that has the method walk, but we also want to create a class
Cat

# that will also have the method walk. We would have to repeat all the same code for defining
# the walk method under each class: dog, cat, and whatever other mammal we create.

# DO NOT REPEAT YOURSELF - DRY - cuz they all like to talk about this.

# If we create the same method inside of multiple classes, then if there ever needs to be

# a change to that method, it must be changed in every class where it appears, but..

# If we use INHERITANCE, we can create a parent class with multiple children that can
# inherit methods and attributes from the parent class.

class Mammal:
def walk(self):
print("Walk, animal!")

class Dog(Mammal): # <- This is how we assign a class to a parent class so it can inherit
def bark(self): # <- We can also define methods specific to child classes
print('l am a dog. | go WOOF!")

class Cat(Mammal):
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def be_annoying(self):
print("l am a cat. | am being annoying!")

dog1 = Dog()
dog1.walk()
dog1.bark()

cat1 = Cat()
cat1.be_annoying()
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# 08-21-22 MODULES (https;//youtu.be/ uQrJoTkZIc @ 3:19:48)
# Modules are files with Python code. We use them to organize our code into multiple files,
# just like the fruits, vegetables, and other sections in a supermarket.

# We refer to each file as a module (REFER TO CONVERTER_MODULES.PY for this section)
# As we write more functions and classes, we put them in the module(file) to which they belong,
# organizing each by the fact that they relate to each other or work together.

import utils

# The module file is an object, so we can use . operator to access its members and call
# those functions:

print(utils.lbs_to_kgs(70))  # PRINTS: 31.5

# Instead of importing the entire module, you can also import a single function from inside
# the module:

from utils import lbs_to_kgs
# By importing this way, we do not have to prefix with the module(file) name.

print(lbs_to_kgs(30)) # PRINTS: 13.5

# CHALLENGE: create a function in utils.py called find_max that takes a list and
# returns the largest number from the list.

from utils import find_max

listo1 = [4, 6, 12, 67, 3, 44, 13, 55]

print(find_max(listo1))

# PACKAGES: Big projects can contain hundreds or thousands of modules or files. Related
modules
# can be organized inside of packages, containers for multiple files, a directory or folder.

# Imagine it like a department store that has different sections: Men's, Women's, Children’s,

# and within those sections are subsections for various clothing types, etc.

# The Men's section could be seen as a package, and the outerwear section within the Men's
# section could be seen as a module.

# To create a package:

# 1) Create a new directory inside of your project with a descriptive name for the package.
#2) Add a Python file called _init_ to the package directory. (Tells Python this is a package.)
# The files for this demonstration are in directory: package, module: shipping

# To import modules from a package, you have to give name of package . name of module.

import package.shipping

# This is a lot to type.
package.shipping.calc_shipping()

# So we can import like this:
from package.shipping import calc_shipping as ship
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ship()

# Or you can import the entire module, shorten its name and use the dot operator for
individual
# functions within the module such as shipping.calc_shipping

# PYTHON'S BUILT-IN MODULES: Python's documentation lists and explains all the built-in
# modules available. Mosh is gonna talk about the module random

import random
for i in range(3):
print(random.random())  # <- by default, generates a random number between 0 and 1

# PRINTS:

# 0.8004578459479664

# 0.057541098205425745
#0.7747335751454704

for iin range(3):
print(random.randint(10, 20)) # <- randint gives integers, and the arguments are the range

team = ['John', 'Heather', 'Mary"', 'Bob’, 'Bill', 'Scooter', 'Bart’, 'Chester’, 'Louise']

leader = random.choice(team) # <- Makes a random choice from a list passed to It.
print(leader)

# CHALLENGE: Make a dice roll program
# Define a class called DICE with a method called ROLL that returns a tuple with two random
ints.

class Dice:
def roli(self):
x = random.randint(1, ¢)
y = random.randint(1, 6)
rollresult = (x, y)

return roll_result

dice = Dice()
print(dice.roll())

# FILES and DIRECTORIES:
# Pathlib - library you can use to create objects to work with directories and files.
from pathlib import Path

# Absolute Path = start from root of hard disk to the directory going to the file
# Relative Path = starting from the current directory going to the file
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path = Path("package")
print(path.exists()) # <- Checks that the path is correct and exists.

# If you have set path = Path() and left out any other diretory, it will assume you mean
# the one you are in.

# MKDIR = to make a new directory (whatever directory path has been set to)
# RMDIR = to delete a directory (whatever directory path has been set to)

# GLOB = If you want to open all the files and directories in a path. Very useful if
# you are working on a program that opens a lot of files from other places.

# To get all the files (but not directories) in a given path/directory, use path.glob("**)
# To get files of a certain type: path.glob(* py') (for example, Python files). You will
# get a generator object, which you can loop through

for file in path.glob(".py"):
print(file)
# PyPi and Pip: Python Package Index (Pip is how you open packages from PyPi)

# PyPi - tons of packages available. Some are not complete or contain bugs though

# WEB-SCRAPING - there are packages to help with this.
# Selenium - package for automating web app testing



